期刊文献+

基于卷积神经网络的车标识别 被引量:4

Vehicle Logo Recognition Based on Convolutional Neural Networks
下载PDF
导出
摘要 提出一种基于卷积神经网络(CNN)的车标识别方法,通过多层的特征学习,能够直接从训练样本中提取特征,最后送入神经网络分类器进行分类。验证集采用5000个从属于10类车标并附有各类变化的车标数据库,该应用算法达到98.28%的平均准确率和每张少于3ms的识别速度(在MATLAB环境下),实验表明,该方法对于车标识别问题具有优异的准确率和鲁棒性,且对于计算资源要求很低。 Proposes a vehicle logo recognition based on Convolutional Neural Networks. With a deep hierarchical feature learning process, the pro- posed method extracts the features from the training samples directly, and trains the classier based on neural network. Applies 5,000 logos belonging to 10 vehicle manufactures for validation. The average accuracy 98.28% for ten classes and fast implementation (less than 3ms for each logo in MATLAB) has demonstrated that the proposed method outperforms than state-of-art with higher accuracy, stronger ro- bustness, and less computational cost.
作者 孙晔 吴锐文
出处 《现代计算机(中旬刊)》 2015年第4期84-87,共4页 Modern Computer
关键词 智能交通 车标识别 深度学习 卷积神经网络 Intelligent Transportation Systems Vehicle Logo Recognition Deep Learning Convolutional Neural Networks
  • 相关文献

参考文献11

  • 1Dlagnekov L, Belongie S J. Recognizing Cars [M]. Department of Computer Science and Engineering, University of California, San Diego, 2005.
  • 2Conos M. Recognition of Vehicle Make from a Frontal View[J]. Master, Czech Tech. Univ., Prague, Czech Republic, 2006.
  • 3Hubel D H, Wiesel T N. Receptive Fields of Single Neurones in the Cat's Striate Cortex[J]. The Journal of Physiology,1959,148 (3): 574-591.
  • 4LeCun Y, Bottou L, Bengio Y, et al. Gradient-Based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998, 86 (1 1 ): 2278-2324.
  • 5Lawrence S, Giles C L, Tsoi A C, et al. Face Recognition: A Convolutional Neural-Network Approach[J]. Neural Networks, IEEE Transactions on, 1997, 8(1 ): 98-113.
  • 6Anagnostopoulos C N E, Anagnostopoulos I E, Loumos V, et al. A License Plate-Recognition Algorithm for Intelligent Transportation System Applications[J]. Intelligent Transportation Systems, IEEE Transactions on, 2006, 7(3 ): 377-392.
  • 7Psyllos A P, Anaguostopoulos C N E, Kayafas E. Vehicle Logo Recognition Using a Sift-Based Enhanced Matching Scheme[J]. Intelli- gent Transportation Systems, IEEE Transactions on, 2010, 11 (2): 322-328.
  • 8Yunqiong W, Zhifang L, Fei X. A Fast Coarse-to-Fine Vehicle Logo Detection and Recognition Method[C]. Robotics and Biomimetics,2007. ROBIO 2007. IEEE International Conference on. IEEE, 2007:691-696.
  • 9Sam K T, Tian X L. Vehicle Logo Recognition Using Modest Adaboost and Radial Tchebichef Moments[C]. International Conference on Machine Learning and Computing(ICMLC 2012),2012.
  • 10Psyllos A, Anagnostopoulos C N, Kayafas E. M-SIFI: A New Method for Vehicle Logo Recognition[C]. Vehicular Electronics and Safety (ICVES), 2012 IEEE International Conference on. IEEE, 2012:261-266.

同被引文献38

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部