期刊文献+

社区热点微博推荐研究 被引量:7

Community Hot Statuses Recommendation
下载PDF
导出
摘要 分析并总结了影响用户对特定微博兴趣的若干因素,在此基础上基于潜在因素模型提出了1个融合显式特征和潜在特征的社区热点微博推荐算法(community micro-blog recommendation,CMR),并将其用于发现微博兴趣社区热点信息.算法在3个兴趣社区上进行了实验,结果表明:1)融合2种特征信息的微博推荐效果好于使用单一特征信息的推荐;2)CMR的推荐效果好于基于转发次数的对照实验(micro-blog repost rank based recommendation,MRR);3)通过分析各个算法所推荐的微博内容,发现CMR倾向于为用户推荐兴趣社区相关微博,而MRR倾向于为用户推荐公共热点微博. Micro-blog recommendation is an effective technique to resolve the information overload problem in micro-blog systems. In this paper, we summarize and model several key factors which affect a user's interest on a specific status, including implicit features, content features (i.e., content similarity, user tags, and user's favorites), social network features, and status features. Based on the above features, we propose a community hot status recommendation algorithm—CMR (community micro-blog recommendation), which combines both explicit features and implicit features for better recommendation. Specifically, we propose a learning method to rank based framework, which learns a user's interest model of status from his preference data, including his retweets, favorites, comments, etc. Then new statuses are scored and ranked using the learned interest model. In order to measure our method's performance, we conduct a series of experiments in three community data sets (including NLP, Photography and Basketball). Experimental results show that: 1)by combining both implicit features and explicit features, our method achieves better recommendation performance than that using a single type of features; 2) compared with the MRR (micro-blog repost rank based recommendation), CMR gets better recommendation performance; 3) MRR prefers recommending hot statuss in the whole micro-blog system, in contrast CMR usually recommends community-specific statuses.
出处 《计算机研究与发展》 EI CSCD 北大核心 2015年第5期1014-1021,共8页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61433015 61272324) 国家"八六三"高技术研究发展计划基金项目(2015AA015405) 网络文化与数字传播北京市重点实验室开放课题(ICDD201204)
关键词 微博 推荐 社区 潜在因素模型 信息过载 micro-blog recommendation community latent factor model information overloading
  • 相关文献

参考文献12

  • 1Liu Jiahui, Dolan P, Pedersen E R, Personalized news recommendation based on click behavior [C] //Proc of the 15th Int Conf on Intelligent User Interfaces. New York: ACM. 2010: 31-44.
  • 2Lerman K. Social networks and social information filtering on digg [J]. journal IEEE Internet Computing Archive, 2007, 11(6): 16-28.
  • 3Sinha R R, Swearingen K. Comparing recommendations made hy online systems and friends [C]//Proc of the 2nd DELOS Network of Excellence Workshop on Personalisation and Recommender Systems in Digital I.ihraries. Dublin: Dublin City University, 2001.
  • 4Koren Y. The bellkor solution to the netflix grand prize [EB/OL]. 2009 [ 2013 -11-29]. http://www, netflixprize. corn/asset s/GrandPrize.2009 BPC_BellKor. pdf.
  • 5Chen Jilin, Nairn R, Cthi E. Speak little and welh Recommending conversations in online social streams [C]//Proc of the 2011 SIC-CttI C.onf on Human Factors in Computing Systems. New York: ACM, 2011:217-226.
  • 6Yan Rui, l.apata M, l.i Xiaoming. Tweet recommendation with graph co-ranking [C] //Proc of the 50th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACI., 2012: 516-525.
  • 7Koga H, Taniguchi T. Developing a user recommendation engine on twitter using estimated latent topics [C] //Proe of the 14th Int Conf on Human Computer Interaction: Design and Development Approaches. New York:ACM, 2011: 461-470.
  • 8Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation [J]. The Journal of Machine l.earning Research, 200a, 3(4/ 5) : 993-1022.
  • 9彭泽环,孙乐,韩先培,石贝.基于排序学习的微博用户推荐[J].中文信息学报,2013,27(4):96-102. 被引量:15
  • 10Geyer W, Dugan C, Millen D R, et al. Recommending topics for selrdeseriptions in online user profiles[C] //Proe of the 2008 ACM Conf on Recommender Systems. New York: ACM, 2008: 59-66.

二级参考文献11

  • 1Zhou T, Ma H, Lyu , M. , King, 1. UserRec: A User Recommendation Framework in Social Tagging Sys?tems[CJ/ /Proceedings of the 24th AAAI Conference on Artificial Intelligence, 2010: 1486-1491.
  • 2Jilin Chen, Werner Geyer, Casey Dugan. Make new friends, but keep the old: recommending people on so?cial networking sites[CJI /Proceedings of CHIll: Proceedings of the 27th international conference on hu?man factors in computing systems ACM New York, 2009.
  • 3Hiroyuki Koga , Tadahiro Taniguchi. Developing a User Recommendation Engine on Twitter Using Esti?mated Latent Topics], CJ/ /Proceedings of HCI (1) 2011: 461-470.
  • 4Geyer W, Dugan C, Millen D, et al. Recommending topics for self-descriptions in online user profiles[CJ/ / Proceedings of RecSys08, 2008: 59-66.
  • 5Sinha R, Swearingen K. Comparing recommendations made by online systems and friends[CJ/ /Proceedings of DELOS- NSF Workshop on Personalization and Rec?ommender Systems in Digital Libraries. 2001.
  • 6Guy I, Zwerdling N, Carmel D, et al. Personalized recommendation of social software items based on so?cial relations[CJ/ /Proceedings of RecSys , 2009: 53- 60.
  • 7TY Liu. Learning to Rank for Information Retrieval[J]. Foundations and Trends in Information Retrieval, 2009.
  • 8K Dindia and D Canary. Definitions and Theoretical Perspectives on Maintaining Relationships.Journal of Social and Personal Relationships[J], 1993, 10 (2) : 163-173.
  • 9Malone T, Grant K, Turbak F, et al. Intelligent in?formation sharing systems]]]. Communications of the ACM , 1987, 30(5): 390-402.
  • 10J Hu, B Wang, Y Liu. Personalized Tag Recommen- dation Using Social Contacts[CJ/ /Proceedings of SRS VVorkshops. 2011.

共引文献14

同被引文献58

引证文献7

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部