期刊文献+

基于软硬件协同设计的车道线实时识别方法 被引量:3

Real-time Lane Recognition Method Based on Hardware-software Co-design
下载PDF
导出
摘要 为兼顾车道识别的鲁棒性和实时性,综合考虑硬件设计资源和软件功能的有效分配,设计了一种基于嵌入式平台的车道线识别方法。从整个系统的生产消费模型考虑,提出了匹配增强的必要性,并根据车道线不同宽度特征,提出了多尺度匹配滤波方法;根据改进的恒虚警率检测数学模型来估计局部噪声水平从而确定最适应的动态提取阈值。以可编程逻辑门阵列(FPGA)采集高帧率、宽动态范围的道路图像,并以系数分解法实现匹配滤波的硬件加速优化设计。实验和评估结果证明,该嵌入式系统可以在多种交通场景下鲁棒地识别车道线特征点,处理速率达到每秒60帧。 In order to obtain robustness and real timing for lane recognition,a lane recognition scheme was designed based on embedded system taking the effective allocation of hardware resource and software function into account.From the perspective of producer/consumer model of the whole system,the necessity of matched enhancement was put forward,and multi-scale matched filtering method was proposed according to the different width characteristics of lane markings,then an adaptive dynamic threshold was set based on local noise estimation from the improved mathematics model of CFAF.The road images of high frame rate and wide dynamic range were captured through field programmable gate array(FPGA)and then the matched filtering was speeded up through the coefficient decomposition technology in the hardware optimization design.Experiments and evaluation prove the proposed system can robustly detect lane markings under different traffic scenarios with the processing frame rate of 60 fps.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2015年第10期1337-1344,共8页 China Mechanical Engineering
基金 国家自然科学基金资助项目(51175159) 湖南省科技计划资助项目(2013WK3024) 湖南省研究生科研创新项目(CX2013B146)
关键词 多尺度匹配滤波器 恒虚警率 嵌入式系统 车道线识别 multi-scale matched filter constant false alarm rate(CFAR) embedded system lane recognition
  • 相关文献

参考文献16

  • 1Jeffrey D, Anthony G. Autonomous Driving--a Practical Roadmap [J]. SAE Technical Paper, 2010-01-2335, 2010.
  • 2Hsiao P, Yeh C, Huang S, et al. A Portable Vi- sion-based Real-time Lane Departure Warning Sys- tem Day and Night[J]. IEEE Transactions on Ve- hicular Technology, 2009, 58(4).. 2089-2094.
  • 3陈无畏,王家恩,汪明磊,王金波.视觉导航智能车辆横向运动的自适应预瞄控制[J].中国机械工程,2014,25(5):698-704. 被引量:36
  • 4Glaser S, Vanholme B, Mammar S, et al. Maneu- ver-based Trajectory Planning for Highly Autono- mous Vehicle on Real Road with Traffic and Driver Interaction[J]. IEEE Transactions on Intelligent Transport System, 2010, 11(3) : 589-606.
  • 5Wang J, Lin C, Chen S. Applying Fuzzy Method to Vision-based Lane Detection and Departure Warning System [J]. Expert Systems with Applications, 2010, 37.. 113-126.
  • 6Yoo H, Yang U, Sohn K, et al. Gradient-Enhan- cing Conversion for Illumination-Robust Lane De- tection[J]. IEEE Transactions on Intelligent Trans- port System, 2013, 14(3) : 1083-1094.
  • 7Jung C, Kelber C. Lane Following and Lane Depar- ture Using a Linear-parabolic Model[J]. Image and Vision Computing, 2005, 23: 1192-1202.
  • 8Hur J, Kang S, Seo S. Multi-Lane Detection in Ur- ban Driving Environments Using Conditional Ran- dom Fields [C]//2013 IEEE Intelligent Vehicles Symposium(IV). Gold Coast, Australia, 2013.. 1297-1302.
  • 9Xin Wang. Laplacian Operator-based Edge Detec- tors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5): 886-890.
  • 10于兵,张为公,龚宗洋.基于机器视觉的车道偏离报警系统[J].东南大学学报(自然科学版),2009,39(5):928-932. 被引量:25

二级参考文献43

共引文献66

同被引文献27

引证文献3

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部