期刊文献+

一类多边形随机链的Edge-Wiener指数 被引量:1

Note on the Edge-Wiener Indices of a Class of Random Polygonal Chains
下载PDF
导出
摘要 Edge-Wiener指数是一种新的反映物质物理化学性质的拓扑不变量,它与著名的Wiener指数有着紧密的联系。为了能比较全面地研究一类重要的多边形链的相关性质,结合差分方程和概率论领域一些方法,给出了此类多边形随机链Edge-Wiener指数的期望的具体表达式。作为应用,找到了一类取Edge-Wiener指数极值的多联苯链并重新得到了一些现已发表的结果。最后,研究了Edge-Wiener指数的渐近行为。 Edge-Wiener index is a new topological invariant which is used in the study of physicochemi-cal properties of chemical compounds and is closely associated with the Wiener index. To investigate the related properties of a class of important polygon chains comprehensively,an explicit expression for the expected value of the Edge-Wiener indices of a class of random polygonal chains is given.For applica-tions,the Polyphenyl chains which can achieve the maximum and minimum of the Edge-Wiener indices is found.And some results that have been published in recent papers are revealed.Finally the asymptotic behaviour of Edge-Wiener indices is also considered.
作者 王红勇 姜琴
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第2期48-50,共3页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 湖南省自然科学基金资助项目(14JJ6020) 衡阳市科技局资助项目(2013KJ20) 博士启动基金资助项目(2011XQD36) 南华大学科研平台资助项目
关键词 Edge-Wiener指数 多边形随机链 期望 Edge-Wiener index random polygonal chains expected value
  • 相关文献

参考文献8

  • 1GUTMAN I, KENNEDY J W, QUINTAS L V. Wiener numbers of random benzenoid chains [ J ]. Chemical Physics Letters, 1990, 173 : 403 -408.
  • 2YANG W L, ZHANG F J. Wiener index in random poly- phenyl chains [ J ]. MATCH Commun Math Comput Chem, 2012, 68:371 -376.
  • 3WANG H Y, QIN J, GUTMAN I. Wiener numbers of random pentagonal chains [ J ]. Iranian Journal of Mathe- matical Chemistry, 2013,4 (1) : 59 -76.
  • 4CHEN A L, ZHANG F J. Wiener index and perfect matchings in random phenylene chains [ J ]. MATCH Commun Math Comput Chem, 2009, 61:623 -630.
  • 5IRANMANESH A, GUTMAN I, KHORMALI O, et al. The edge versions of the Wiener index [ J ]. MATCH Commun Math Comput Chem, 2009, 61 : 663 -672.
  • 6DANKELMANN P, GUTMAN I, MUKWEMBI S, et al. The edge-Wiener index of a graph [ J ]. Discrete Mathe- matics, 2009, 309 : 3452 - 3457.
  • 7KNOR M, POTONIK P, SKREKOVSKI R. Relation- ship between the edge-Wiener index and the Gutman in- dex of a graph [ J ]. Discrete Applied Mathematics, 2014, 167:197-201.
  • 8DOU Y, BIAN H, GAO H P, et al. The polyphenyl chains with extremal edge-Wiener indices [ J ]. MATCH Commun Math Comput Chem, 2010, 64:757 -766.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部