期刊文献+

CuMn_2O_4/NiMn_2O_4近常温热催化降解亚甲基蓝研究 被引量:1

Preparation of Cu Mn_2O_4/ NiMn_2O_4 Catalysts for Thermocatalytic Degradation of Methylene Blue Near Room Temperature
下载PDF
导出
摘要 采用高温固相合成法制备Cu Mn2O4/Ni Mn2O4热敏催化剂,通过XRD、TEM、TGA、UV-vis和SEM等手段对样品进行了表征,研究了近常温热催化降解亚甲基蓝有机污染物。结果表明:亚甲基蓝底物质量浓度分别为30、40和50 mg/L时,随着温度从30、35到40℃的升高,去除率分别达到68.35%、79.64%和88.89%;在完全遮光、40℃、亚甲基蓝底物质量浓度为30 mg/L和热敏催化剂用量45 mg的条件下,经过48 h热催化降解过程,最佳降解率达到最优。此外,利用GC-MS对降解产物进行了分析,发现降解的主要产物为二氯甲烷和甲苯,由此证明亚甲基蓝确实发生了降解反应,且其降解程度也比较彻底。综上所述,近常温热催化降解途径将为未来工业废水处理提供潜在解决方案。 A CuMn2O4/NiMn2O4 heat-sensitive catalyst was prepared by a high temperature solid phase method.The product was characterized by X-ray diffraction (XRD),transmission electron microscope (TEM),thermogravimetric analysis (TGA),UV-Vis spectroscopy (UV-vis),and scanning electron mi-croscopy (SEM).The thermocatalytic degradation behavior for methylene blue (MB)was investigated at near room temperature.The results showed that,when the system temperature was increased from 30, 35,to 40 ℃ at the initial concentrations of 30,40,and 50 mg/L,their corresponding removal rates reached 68.35%,79.64%and 88.89%,respectively.The optimal degradation rate was achieved in the conditions of the treatment time of 48 h,the initial concentration of MB at 30 mg/L,the dosage of 45 mg for thermal catalyst,and at 40 ℃in dark.Besides,the degradation products were analyzed by gas chro-matography-mass spectrometer (GC-MS).The result indicated that the main products were dichlorometh-ane and toluene,confirming the true occurrences of the degradation for MB.In conclusion,the thermo-catalytic degradation route under near room temperature may provide a potential method in the treatment for waste water in industry.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第2期66-71,共6页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家核设施退役及放射性废物治理科研重点资助项目(2014ZG6101) 国家科技支撑计划资助项目(2007BAE42B04) 四川省科技创新苗子工程重大资助项目(2014-17) 西南科技大学研究生创新基金资助项目(14ycx005)
关键词 近常温 热催化 降解 亚甲基蓝 near room temperature thermocatalyst degradation methylene blue
  • 相关文献

参考文献15

  • 1ELIMELECH M, PHILLIP W A. The future of seawater desalination: energy, technology, and the environment [J].Science, 2011, 333:712-717.
  • 2ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible- light photocatalysis in nitrogen-doped titanium oxides [J]. Science, 2001, 293 : 269 -271.
  • 3ZHANG N, YANG M Q, TANG Z R, et al. CdS-gra- phene nanocomposites as visible light photocatalyst for redox reactions in water: A green route for selective trans- formation and environmental remediation [ J ]. J Catal,2013, 303:60-69.
  • 4CHEN X, LIU L, YU P Y, et al. Increasing solar ab- sorption for photocatalysis with black hydrogenated titani- um dioxide nanocrystals [J]. Science, 2011,331: 746.
  • 5SARMAH S, KUMAR A. Photocatalytic activity of polya- niline-TiO2 nanocomposites [ J ]. Indian Phys, 2011,85: 713 -726.
  • 6ROY P, BERGER S, SCHMUKI P. TiO2 Nanotubes: synthesis and applications [ J ]. Angew Chem Int Ed, 2011, 50 : 2904 - 2939.
  • 7LIU S, YU J, JARONIEC M. Tunable photoeatalytie se- lectivity of hollow TiOz mierospheres composed of anatase polyhedra with exposed {001} facets [J]. J Am Chem Soc, 2010, 132: 11914-11916.
  • 8XIN Y C, JIANG J, HUO K F, et al. Bioactive SrTiO3 nanotube arrays: strontium delivery platform on Ti-based osteoporotic bone implants [ J ]. ACS Nano, 2009, 3 (10) : 3228 -3234.
  • 9CHEN Q, SHI H, SHI W, et al. Enhanced visible photo- catalytic activity of titania-silica photocatalysts: effect of carbon and silver doping [ J ]. Catal Sei Teehnol, 2012, 2:1213 - 1220.
  • 10BINGHAM S, DAOUD W A. Recent advances in mak- ing nano-sized TiO2 visible-light active through rare- earth metal doping [J]. Mater Chem, 2011, 21:2041 - 2050.

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部