期刊文献+

基于云平台的交通视频检测数据优化研究 被引量:6

Data Optimization of Traffic Video Vehicle Detector Based on Cloud Platform
下载PDF
导出
摘要 交通视频检测技术在智能交通领域应用广泛,成为当前交通信息采集的主要手段.但在恶劣天气条件下,视频车辆检测器采集的交通数据误差较大,难以准确反映路面实际状况.为解决此问题,本文提出基于不同气象能见度等级构建k型BP网络,对气象能见度低于10 km时的原始交通数据作预处理优化.分析了云计算在交通信息处理方面的优势,基于云计算平台实现了该模型的构建与推广.最后以成都绕城高速七里沟大桥定点观测得到的数据做样本进行实例分析,对比了该模型方法与传统处理方法的数据处理效果,得出了本文方法较传统方法先进的结论. Traffic video detection technology is widely used in ITS and becomes the main form of transportation information collection. But in bad weather condition, the traffic data deviation is so large that it’s difficult to accurately reflect the traffic situation. To solve this problem,k -type BP neural network model is established based on different meteorological visibility level, then preprocess the data which collected in the meteorological visibility level below 10 km. It also analyzes the advantages of cloud computing in traffic information processing, realizes the construction and promotion of the model based on cloud computing platform. The superiority of the new model compared with the traditional method is validated by an example. Finally, an example is analyzed based on observatory date of Chengdu beltway Qiligou Bridge, compare the effectiveness of the proposed method and the traditional processing methods. The conclude shows that the proposed method is more advanced than the conventional methods.
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2015年第2期76-80,141,共6页 Journal of Transportation Systems Engineering and Information Technology
基金 2013年四川省科技支撑计划资助项目(2013GZ0138)
关键词 智能交通 交通数据处理 k型BP网络 视频车辆检测器 云计算 恶劣天气条件 intelligent transportation traffic data processing k-type BP neural network video vehicle detector cloud computing bad weather condition
  • 相关文献

参考文献12

  • 1GA/T497—2009.公路车辆智能监测记录系统通用技术条件[S].
  • 2Pedro Duarte Silva A. Two-group classification with high-dimensional correlated data: A factor model approach[J]. Computational Statistics and Data Analysis, 2011, 55(11): 2975-2990.
  • 3Christou Nicolas, Dinov Ivo D. Confidence interval based parameter estimation-a new SOCR applet and activity[J]. Transportation Research Part A, 2012, 34 (10) : 33-36.
  • 4Piya Chootinan, Anthony Chen. Confidence interval estimation for path flow estimator[J]. Transportation Research Part B, 2011, 45(10) :47-51.
  • 5Wang H Q, Chen P. Intelligent diagnosis method for rolling element bearings faults using possibility theory and neural network[J]. Computers & Industrial Engineering, 2011, 60(4): 511-518.
  • 6Qiu Chenye Zuo Xingquan Wang Chunlu Wu Jianping.A BP neural network based information fusion method for urban traffic speed estimation[J].Engineering Sciences,2010,8(1):77-83. 被引量:6
  • 7Billot R, Faouzi N E, Vuyst F D. A multi-level assessment of the rain impact on drivers" behaviors: standardized methodology and empirical analysis[C]. The 88th Annual Meeting of the Transportation Research Board. Washington D CUSA, 2009: 39-44.
  • 8QX/T114-2010,能见度预报等级和服务[s].
  • 9Wen Yuntong, Ren Xuemei. Neural networks-based adaptive control for nonlinear time-varying systems with unknown control direction[J]. IEEE Trans on Neural Networks, 2011, 22(10): 1599-1612.
  • 10Vedaldi A, Gulshan V, Varma M, et al. Multiple kernels for object detection[C]. Processing of IEEE Int. Conf. Computer Vision. Kyoto: IEEE, 2009: 1-8.

二级参考文献10

  • 1杨鹃,孙华,吴林.模糊神经网络信息融合方法在机器人避障中的应用[J].自动化技术与应用,2005,24(2):22-24. 被引量:13
  • 2Ding Lu, Cai Lin, Chen Jiabin, et al. Improved neural network information fusion in integrated navigation system [ A ]. Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation[ C]. Harbin, IEEE, 2007 : 2049-2053.
  • 3Kaplan E D, Hegarty C. Understanding GPS: Principles and Applications[M]. US: Artech House Publishers, 2005, 253-312.
  • 4Yanying Li, McDonald, M. Link travel time estimation using single GPS equipped probe vehicle [ A ]. Proceeding of the 2002 IEEE 5th International Conference on Intelligent Transportation Systems [ C ]. Singapore, IEEE, 2002:932-937.
  • 5Bertini R L, S B a K B. Using ITS data fusion to examine traffic dynamics on a freeway with variable speed limits[ A]. Proceedings of the 8th International IEEE Conference on Intelligent Transportation Systems[ C ]. Toronto,IEEE, 2005 : 1006 -1011.
  • 6Zhu Diqi, Yu Shenglin. Neural networks data fusion algorithm of electronic equipment fault diagnosis [ A]. Proceedings of the 5th World Congress on Intelligent Control and Automation[ C ]. Hangzhou, IEEE, 2004, 2: 1815-1818.
  • 7Ni Xiaoyong, Wang Dianhong, Zhang Hongjian. Application of neural network data fusion algorithm in measurement circuit [ A ]. Proceedings of the 2008. ICIEA 2008. 3rd IEEE Conference on Industrial Eleetronies Applications [ C ]. Singapore, IEEE, 2008 : 12-17.
  • 8Pasika H, Haykin S, Clothiaux E, et al. Neural networks for sensor fusion in remote sensing[ A]. Proceedings of the IJCNN'99. International Joint Conference on Neural Networks[ C]. Washington, DC, IEEE, 1999,4 : 2772-2776.
  • 9Hagan M T, Menhaj M B. Training feed forward networks with the Marquardt algorithm[J]. IEEE Transactions on Neural Network, 1994,5(6) : 989-993.
  • 10Fredric M. Ham Ivica Kostanic, Ye Shiwei, et al. Principles of Neuro-computing for Science& Engineering[M]. China Machine Press, 2000, 95-100.

共引文献6

同被引文献39

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部