摘要
G为有限群,Γ(G)表示G的素图.其顶点集V(GK(G))=π(G)={p p为G的素因子},边集合E(GK(G))={p^q pq∈πe(G),p,q∈V(GK(G))},这里πe(G)表示G的元素的阶的集合.文章得到如下结果 :若Γ(G)=Γ(U6(2)),则G有唯一一个非交换合成因子同构于U6(2)或Hi S.
Let G be a finite group and F(G) the prime graph of G. The vertex set V(GK(G)) of Γ(G) is π(G) = {p|p is a prime divisor of |G|} , and the edge set E(GK (G)) of Γ(G) is {p-q | pq ∈πe (G), p, q ∈ V (GK (G)) }, where ere ( G ) denots the set of element orders of G. The following was found that if F ( G ) = F ( U6 (2) ), then G has a unique non-Abelian composition factor isomorphic to U6 (2) or HiS
出处
《南通大学学报(自然科学版)》
CAS
2015年第1期87-90,共4页
Journal of Nantong University(Natural Science Edition)
基金
国家自然科学基金项目(11371207
11271208
11401324)
关键词
素图
单群
有限单群
prime graph
simple group
finite simple group