期刊文献+

关于有限单群U_6(2)

On the Finite Group U_6(2)
下载PDF
导出
摘要 G为有限群,Γ(G)表示G的素图.其顶点集V(GK(G))=π(G)={p p为G的素因子},边集合E(GK(G))={p^q pq∈πe(G),p,q∈V(GK(G))},这里πe(G)表示G的元素的阶的集合.文章得到如下结果 :若Γ(G)=Γ(U6(2)),则G有唯一一个非交换合成因子同构于U6(2)或Hi S. Let G be a finite group and F(G) the prime graph of G. The vertex set V(GK(G)) of Γ(G) is π(G) = {p|p is a prime divisor of |G|} , and the edge set E(GK (G)) of Γ(G) is {p-q | pq ∈πe (G), p, q ∈ V (GK (G)) }, where ere ( G ) denots the set of element orders of G. The following was found that if F ( G ) = F ( U6 (2) ), then G has a unique non-Abelian composition factor isomorphic to U6 (2) or HiS
出处 《南通大学学报(自然科学版)》 CAS 2015年第1期87-90,共4页 Journal of Nantong University(Natural Science Edition) 
基金 国家自然科学基金项目(11371207 11271208 11401324)
关键词 素图 单群 有限单群 prime graph simple group finite simple group
  • 相关文献

参考文献14

  • 1Williams J S. Prime graph components of finite groups[J]. J Algebra, 1981, 69(2) :487-513.
  • 2Khosravi A, Khosravi B. Quasirecognition by prime graph of 2 the finite simple group G2 (q)[J]. Siberian Math J, 2007, 48(3) :570-577.
  • 3Hagie M. The prime graph of a sporadic simple group [J]. Comm Algebra, 2003, 31 ( 9 ) : 4405-4424.
  • 4Khosravi B, Khosravi B, Khosravi B. Groups with the same prime graph as a CIT simple group [J ]. Houston J Math, 2007, 33(4) :967-977.
  • 5Khosravi B, Khosravi B, Khosravi B. On the prime graph of PSL(2, p) where p > 3 is a prime number[J]. Acta Math Hungar, 2007, 116(4) :295-307.
  • 6Khosravi B, Khosravi B, Khosravi B. A characterization of the finite simple grnop L 16 (2) by its prime graph [ J ]. Manuscripta Math, 2008, 126(1) :49-58.
  • 7Khosravi B, Amiri S S S. On the prime graph of L2 (q) where q = p < 100, quasigroups and related systems[J]. 2006, 14(2) : 179-190.
  • 8Khosravi B. N-recognition by prime graph of the simple group PSL (2, q ) [ J ]. J Algebra Appl, 2008, 7 (6) : 735- 748.
  • 9Zavarnitsine A V. Recognition of finite gruops by the prime graph[J]. Algebra and Logic, 2006, 45(4):220-231.
  • 10Akhlagbi Z, Khatami M, Khosravi B. Quasireeognition by 2 prime graph of the finite simple group F4 (q) [ J ]. Acta Math Hungar, 2009, 122(4) :387-397.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部