期刊文献+

求解非光滑最优控制问题的自适应网格优化 被引量:4

Adaptive mesh refinement for solving non-smooth optimal control problems
下载PDF
导出
摘要 针对传统直接配点法在求解非光滑最优控制问题时存在离散误差大、精度低的问题,提出了一种自适应直接配点法。利用局部分段插值多项式逼近最优解,将最优控制问题离散为非线性规划问题,并给出了离散误差估计方法,根据离散误差的大小确定区间内节点的加密量,提出了自适应网格优化算法,利用该算法将大部分节点配置在非光滑区域以降低离散误差。最后通过仿真算例将所提算法与传统直接配点法和文献中的拟谱自适应算法分别进行比较,验证了所提算法的高精度和有效性。 Due to the large discrete errors and low accuracy of the conventional direct collocation method for solving non-smooth optimal control problems, an adaptive direct collocation method is presented. The optimal control problem is transcribed into a nonlinear programming problem by using local piecewise interpolation poly nomials to approximate the optimal solution. The estimation method of discrete errors is also presented, and an adaptive mesh refinement algorithm is used to refine the grid by adding nodes to the segments in which the opti mal solution is non-smooth, the algorithm is repeated until a user-specified error tolerance is met. Finally, the simulation results demonstrate the utility and efficiency of the proposed method by comparing it with the con- ventional direct collocation method and the adaptive pseudospectral algorithm respectively.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第6期1377-1383,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(11272356) 中国博士后科学基金(2013M541676)资助课题
关键词 最优控制问题 非光滑 直接配点法 网格优化 自适应算法 optimal control problem non smooth direct collocation method mesh refinement adaptive algorithm
  • 相关文献

参考文献24

  • 1Jaddu H. Direct solution of nonlinear optimal control problems using quasi linearization and Chebyshev polynomials[J]. Journal of the Franklin Institute, 2002, 339(4/5) : 479 - 498.
  • 2Shamsi M. A modified pseudospectral scheme for accurate solu- tion of bang bang optimal control problems[J]. Optimal Control Application and Methods, 2011, 32(6) :668 - 680.
  • 3Ross I M, Fahroo F. A direct method for solving nonsmooth op- timal control problems[C]//Proc, of the International Federa tion of Automatic Control World Conference, 2002 : 3860 - 3864.
  • 4Darby C L, Hager W W, Rao A V. An hp-adaptive pseudospec- tral method for solving optimal control problems[J]. Optimal Control Application and Methods, 2010, 32(4) :476 - 502.
  • 5Darby C L, Hager W W, Rao A V. Direct trajectory optimization using a variable low order adaptive pseudospectral method [J]. Jour hal of Spacecraft and Rockets, 2011, 48(3) : 433 - 445.
  • 6刘鹤鸣,丁达理,黄长强,黄汉桥,王铀.基于自适应伪谱法的UCAV低可探测攻击轨迹规划研究[J].系统工程与电子技术,2013,35(1):78-84. 被引量:12
  • 7韩威华,杨新,姜萌哲.基于hp自适应伪谱法的N脉冲轨道优化设计[J].系统工程与电子技术,2013,35(12):2566-2571. 被引量:3
  • 8刘渊博,朱恒伟,黄小念,郑钢铁.伪谱法求解非光滑最优控制问题的网格优化[J].系统工程与电子技术,2013,35(11):2396-2399. 被引量:7
  • 9Marzban H R, Hoseini S M. A composite Chebyshev finite difference method for nonlinear optimal control problems[J]. Communication in Nonlinear Science and Numerical Simula-tion, 2013, 18(6): 1347-1361.
  • 10张稳.非光滑最优控制问题的一种数值解法[J].高校应用数学学报(A辑),2009,24(2):207-220. 被引量:4

二级参考文献103

  • 1雍恩米,陈磊,唐国金.飞行器轨迹优化数值方法综述[J].宇航学报,2008,29(2):397-406. 被引量:125
  • 2孙军伟,乔栋,崔平远.基于SQP方法的常推力月球软着陆轨道优化方法[J].宇航学报,2006,27(1):99-102. 被引量:35
  • 3曾国强,赵汉元,郗晓宁.月球探测器月面软着陆制动轨道研究[J].国防科技大学学报,1996,18(4):40-43. 被引量:2
  • 4Betts J T.Survey of numerical methods for trajectory optimization[J].J Guidance Control Dynam,1998,21(2):193-206.
  • 5Ross I M,Fahroo F.Pseudospectral methods for optimal motion planning of differentially flat systems[J].IEEE Trans Automat Control,2004,49(8):1410-1413.
  • 6Elnagar G,Kazemi M A,Razzaghi M.The pseudospectral Legendre method for discretizting optimal control problems[J].IEEE Trans Automat Control,1995,40(10):1793-1796.
  • 7Elnagar G,Kazemi M A.Pseudospectral Chebyshev optimal control of constrained nonlinear dynamical systems[J].Comput Optim Appl,1998,11:195-217.
  • 8Fahroo F,Ross I M.Direct trajectory optimization by a Chebyshev pseudospectral method[J].J Guidance Control Dynam,2002,25(1):160-166.
  • 9Ross I M,Fahroo F.Legendre pseudospectral approximations of optimal control problems[A].Lecture Notes in Control and Information Sciences[C].Springer-Verlag,2003,327-342.
  • 10Fahroo F,Ross I M.Costate estimation by a Legendre pseudospectral method[J].J Guidance Control Dynam,2001,24(2):270-277.

共引文献33

同被引文献27

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部