期刊文献+

miR-R-203在鸡成肌细胞中靶向抑制EIFEIF4E基因表达的研究 被引量:2

miR-203 Inhibits the Expression of EIF4E Gene in Chicken Myoblast
下载PDF
导出
摘要 为了进一步研究和探索mi R-203在鸡骨骼肌发育中的作用,本研究通过对mi R-203进行靶标预测,发现真核起始因子4E(EIF4E)基因的3′UTR区存在mi R-203的潜在靶标位点。通过构建连接有EIF4E 3′UTR和靶位点突变的EIF4E 3′UTR-MUT的双荧光素酶靶标验证载体,将其分别转染到已过表达mi R-203或阴性对照鸡的DF-1细胞中,检测其中的荧光素酶活性。结果显示,mi R-203能显著抑制EIF4E 3′UTR载体的荧光素酶活性,但不影响EIF4E 3′UTR-MUT载体的荧光素酶活性,mi R-203能靶向调控鸡EIF4E的表达,研究结果为深入分析miR-203在鸡骨骼肌中的功能和作用机制奠定基础。 To further study and explore the function of miR-203 in chicken skeletal muscle development, this study predicted the potential target genes of miR-203 and found that the 3'UTR of eukaryotic initiation factor 4E (EIF4E) gene had a potential binding site of miR-203. Next, two dual-luciferase miRNA target expression vectors which containing the EIF4E 3'UTR or the target site mutation EIF4E 3'lJTR-MUT were constructed, and then transfected these two vectors into chicken DF-1 cells which overexpressing miR-203 or negative control,respectively.The luciferase activity detection results showed that miR-203 could significantly inhibit the luciferase activity of the vector of EIF4E 3'UTR,but the lueiferase activity of EIF4E 3'UTR-MUT vector had no change. Therefore, these results demonstrated that miR-203 could regulate E1F4E expression by target binding to its 3'UTR. This study could lay a good foundation for studying the function and mechanism of miR-203 in chicken skeletal muscle.
出处 《中国家禽》 北大核心 2015年第8期6-11,共6页 China Poultry
基金 现代农业产业技术体系建设专项资金(CARS-42-G05) 国家自然科学基金(31172200)
关键词 miR-203 靶标验证 成肌细胞 蛋白质合成 miR-203 EIF4E target validation myoblast protein synthesis
  • 相关文献

参考文献2

二级参考文献103

  • 1Anderson, C., Catoe, H., Werner, R., 2006. MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res. 34, 5863-5871.
  • 2Backs, J., Worst, B.e., Lehmann, L.H., Patrick, D.M., Jebessa, Z., Kreusser, M.M., Sun, Q., Chen, L., Heft, C., Katus, H.A., Olson, E.N., 2011. Selective repression of MEF2 activity by PKA-dependent proteol?ysis of HDAC4. J. Cell BioI. 195,403-415.
  • 3Baldwin, K.M., Haddad, E, 2002. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms. Am. J. Phys. Med. Rehabil. 81, S40-S51.
  • 4Bartel, D.P., 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297.
  • 5Baskerville, S., Bartel, D.P., 2005. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA II, 241-247.
  • 6Berkes, e.A., Tapscott, SJ., 2005. MyoD and the transcriptional control of myogenesis. Semin. Cell Dev. BioI. 16,585-595.
  • 7Boutz, P.L., Chawla, G., Stoilov, P., Black, D.L., 2007. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev. 21, 71-84.
  • 8Braun, T., Gautel, M., 2011. Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat. Rev. Mol. Cell BioI. 12, 349-361.
  • 9Buckingham, M., 2001. Skeletal muscle formation in vertebrates. Curr, Opin. Genet. Dev. II, 440-448.
  • 10Buckingham, M., Bajard, L., Chang, T., Daubas, P., Hadchouel, J., Meilhac, S., Montarras, D., Rocancourt, D., Relaix, E, 2003. The formation of skeletal muscle: from somite to limb. J. Anat. 202, 59-68.

共引文献31

同被引文献12

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部