期刊文献+

Multiple Positive Solutions for a Nonlinear Elliptic Equation Involving Hardy–Sobolev–Maz'ya Term

Multiple Positive Solutions for a Nonlinear Elliptic Equation Involving Hardy–Sobolev–Maz'ya Term
原文传递
导出
摘要 In this paper, we study the existence and nonexistence of multiple positive solutions for the following problem involving Hardy-Sobolev-Maz'ya term:-Δu-λ u/|y|2 = (|u|pt-1u)/|y|t + μf(x), x∈ Ω,where Ω is a bounded domain in RN(N ≥ 2), 0 ∈ Ω, x = (y, z) ∈ Rk ×RN-k and pt = (N+2-2t)/(N-2) (0 ≤ t ≤ 2). For f(x) ∈ C1(Ω)/{0}, we show that there exists a constant μ* 〉0 such that the problem possesses at least two positive solutions if μ ∈ (0, μ*) and at least one positive solution if μ = μ*. Furthermore, there are no positive solutions if μ ∈ (μ*,+∞). In this paper, we study the existence and nonexistence of multiple positive solutions for the following problem involving Hardy-Sobolev-Maz'ya term:-Δu-λ u/|y|2 = (|u|pt-1u)/|y|t + μf(x), x∈ Ω,where Ω is a bounded domain in RN(N ≥ 2), 0 ∈ Ω, x = (y, z) ∈ Rk ×RN-k and pt = (N+2-2t)/(N-2) (0 ≤ t ≤ 2). For f(x) ∈ C1(Ω)/{0}, we show that there exists a constant μ* 〉0 such that the problem possesses at least two positive solutions if μ ∈ (0, μ*) and at least one positive solution if μ = μ*. Furthermore, there are no positive solutions if μ ∈ (μ*,+∞).
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第6期893-912,共20页 数学学报(英文版)
基金 Supported by NSFC(Grant No.11301204) the Ph D specialized grant of the Ministry of Education of China(Grant No.20110144110001) the excellent doctorial dissertation cultivation grant from Central China Normal University(Grant No.2013YBZD15)
关键词 Hardy-Sobolev-Maz'ya inequality Mountain Pass Lemma positive solutions subsolutionand supersolution Hardy-Sobolev-Maz'ya inequality, Mountain Pass Lemma, positive solutions, subsolutionand supersolution
  • 相关文献

参考文献28

  • 1Ambrosetti, A., Rabinowitz, P. H.: Dual variational methods in critical point throry and application. J Funct Anal., 14, 349-381 (1973).
  • 2Badiale, M., Tarantello, G.: A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics. Arch. Ration. Mech. Anal., 163, 259 293 (2002).
  • 3Bahri, A., Coron, J.: On a nonlinear ellipitic equation involving the critical Sobolev exponent: The effect of the topology of the domain. Commun. Pure AI)pl. Math., 41, 253 294 (1988).
  • 4Bartsch, T., Peng, S., Zhang, Z.: Existence and non-existence of solutions to elliptic equations related to the Caffarelli Kohn Nirenberg inequalities. Calc. Vat. Partial Differential Equations, 30, 113 136 (2007).
  • 5Batt, J., Faltenbaeher, W., Horst, E.: Stationary spherically symmetric models in stellar dynamics. Arch. Ration. Mech. Anal., 93, 159-183 (1986).
  • 6Bhakta, M., Sandeep, K.: Hardy-Sobolev-Maz'ya type equations in bounded domains. J. Differentia Equations., 247, 119-139 (2009).
  • 7Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical sobolev expo- nents. Commun. Pure Appl. Math., 36, 437-477 (1983).
  • 8, , \ ] Cao, D., Han, P.: Solutions for semilinear elliptic equations with critical exponents and Hardy potential. & Differential Equations, 205, 521 537 (2004).
  • 9Co, D., Peng, S.: A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms. J. Differential Equations., 193, 424-434 (2003).
  • 10Cao, D., Peng, S.: A global compactness result for singular elliptic problems involving critical Sobolev exponent. Proc. Amer. Math. Soe., 131, 1857-1866 (2003).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部