期刊文献+

Maps Preserving Peripheral Spectrum of Generalized Jordan Products of Operators 被引量:1

Maps Preserving Peripheral Spectrum of Generalized Jordan Products of Operators
原文传递
导出
摘要 Let X1 and X2 be complex Banach spaces with dimension at least three, A1 and A2 be standard operator algebras on X1 and X2, respectively. For k ≥ 2, let (i1, i2, . . . , im) be a finite sequence such that {i1, i2, . . . , im} = {1, 2, . . . , k} and assume that at least one of the terms in (i1, . . . , im) appears exactly once. Define the generalized Jordan productT1 o T2 o··· o Tk = Ti1Ti2··· Tim + Tim··· Ti2Ti1 on elements in Ai. This includes the usual Jordan product A1A2 + A2A1, and the Jordan triple A1A2A3 + A3A2A1. Let Φ : A1 → A2 be a map with range containing all operators of rank at most three. It is shown that Φ satisfies that σπ(Φ(A1) o··· o Φ(Ak)) = σπ(A1 o··· o Ak) for all A1, . . . , Ak, where σπ(A) stands for the peripheral spectrum of A, if and only if Φ is a Jordan isomorphism multiplied by an m-th root of unity. Let X1 and X2 be complex Banach spaces with dimension at least three, A1 and A2 be standard operator algebras on X1 and X2, respectively. For k ≥ 2, let (i1, i2, . . . , im) be a finite sequence such that {i1, i2, . . . , im} = {1, 2, . . . , k} and assume that at least one of the terms in (i1, . . . , im) appears exactly once. Define the generalized Jordan productT1 o T2 o··· o Tk = Ti1Ti2··· Tim + Tim··· Ti2Ti1 on elements in Ai. This includes the usual Jordan product A1A2 + A2A1, and the Jordan triple A1A2A3 + A3A2A1. Let Φ : A1 → A2 be a map with range containing all operators of rank at most three. It is shown that Φ satisfies that σπ(Φ(A1) o··· o Φ(Ak)) = σπ(A1 o··· o Ak) for all A1, . . . , Ak, where σπ(A) stands for the peripheral spectrum of A, if and only if Φ is a Jordan isomorphism multiplied by an m-th root of unity.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第6期953-972,共20页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant Nos.11171249,11101250,11271217)
关键词 Peripheral spectrum generalized Jordan products Banach spaces standard operatoralgebras Peripheral spectrum, generalized Jordan products, Banach spaces, standard operatoralgebras
  • 相关文献

参考文献25

  • 1Aupetit, B.: Spectrum-preserving linear mappings between Banach algebras or Jordan--Banach algebras. J. London Math. Soc., 62, 917-920 (2000).
  • 2Aupetit, B., Mouton, H. du T.: Spectrum preserving linear mappings in Banach algebras. Studia Math., 109, 91 100 (1994).
  • 3Bai, Z. F., Hou, J. C.: Maps preserving zero-products or Jordan zero-products. Chinese Ann. Math. Ser. A, 29(5), 663-670 (2008).
  • 4Cui, J. L., Li, C. K.: Maps preserving peripheral spectrum of Jordan products of operators. Oper. Matrices, 6, 12146 (2012).
  • 5Hou, J. C.: Rank-preserving linear maps B(X). Sci. China Ser. A, 32, 929-940 (1989).
  • 6Hou, J. C., Li, C. K., Wong, N. C.: Jordan isomorphisms and maps preserving spectra of certain operator products. Studia Math., 184, 31-47 (2008).
  • 7Hou, J. C., Li, C. K., Wong, N. C.: Maps Preserving the spectrum of generalized Jordan product of operators. Linear Algebra Appl., 432, 1049-1069 (2010).
  • 8Jafarian, A. A., Sourour, A. R.: Spectrum-preserving linear maps. J. Funct. Anal., 66, 255--261 (1986).
  • 9Kaplansky, I.: Algebraic and Analytic Aspects of Operator Algebras, CBMS Reg. Conf. Ser. in Math., Vol.1, Amer. Math. Soc., Providence, 1970.
  • 10Kaplansky, I.: Infinite Abelian Groups, U. of Michigan Press, Ann Arbor, Michigan, 1954.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部