期刊文献+

Periodic Wave Solutions and Their Limits for the Modified Kd V–KP Equations 被引量:3

Periodic Wave Solutions and Their Limits for the Modified Kd V–KP Equations
原文传递
导出
摘要 In this paper, we use the bifurcation method of dynamical systems to study the periodic wave solutions and their limits for the modified KdV-KP equations. Some explicit periodic wave solutions are obtained. These solutions contain smooth periodic wave solutions and periodic blow-up solutions. Their limits contain solitary wave solutions, periodic wave solutions, kink wave solutions and unbounded solutions. In this paper, we use the bifurcation method of dynamical systems to study the periodic wave solutions and their limits for the modified KdV-KP equations. Some explicit periodic wave solutions are obtained. These solutions contain smooth periodic wave solutions and periodic blow-up solutions. Their limits contain solitary wave solutions, periodic wave solutions, kink wave solutions and unbounded solutions.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第6期1043-1056,共14页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant Nos.11361069 and 11171115)
关键词 Bifurcation method modified KdV-KP equation periodic wave solutions limits Bifurcation method, modified KdV-KP equation, periodic wave solutions, limits
  • 相关文献

参考文献1

二级参考文献8

  • 1Chen, M., Liu, S. Q., Zhang, Y. J.: A 2-component generalization of the Cammassa-Holm equation and its solution. Letters in Math. Phys., 75, 1-15 (2006)
  • 2Cammasa, R., Holm, D. D.: An integrable shallow water equation with peaked solution. Phys. Rev. Lett., 71, 1161-1164 (1993)
  • 3Cammasa, R., Holml D. D., Hyman, J. M.: A new integrable shallow water equation. Adv. Appl. Mech., 31, 1-33 (1994)
  • 4Li, J. B., Dai, H. H.: On the Study of Singular Nonlinear Travelling Wave Equations, Dynamical Approach, Science Press, Beijing, 2007
  • 5Li, J. B., Wul J. H.,Zhu, H. P.: Travelling waves for an integrable higher order kdV type wave equations. International Journal of Bifurcation and Chaos, 16(8), 2235-2260 (2006)
  • 6Li, J. B., Chen, G. R.: On a class of singular nonlinear traveling wave equations. International Journal of Bifurcation and Chaos, 17(11), (2007)
  • 7Perko, L.: Differential Equations and Dynamical Systems, Springer-Verlag, New York, 1991
  • 8Byrd, P. F., Fridman, M. D.: Handbook of Elliptic Integrals for Engineers and Sciensists, Springer, Berlin, 1971

共引文献5

同被引文献9

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部