期刊文献+

Co/Ni多层膜垂直磁各向异性的研究 被引量:3

Perpendicular magnetic anisotropy in Co/Ni multilayers studied by anomalous Hall effect
原文传递
导出
摘要 采用直流磁控溅射法在玻璃基片上制备了Pt底层的Co/Ni多层膜样品,对影响样品垂直磁各向异性的各因素进行了调制,通过样品的反常霍尔效应系统的研究了Co/Ni多层膜的垂直磁各向异性.结果表明,多层膜中各层的厚度及周期数对样品的反常霍尔效应和磁性有重要的影响.通过对多层膜各个参数的调制优化,最终获得了具有良好的垂直磁各向异性的Co/Ni多层膜最佳样品Pt(2.0)/Co(0.2)/Ni(0.4)/Co(0.2)/Pt(2.0),经计算,该样品的各向异性常数Keff达到了3.6×105J/m3,说明样品具备良好的垂直磁各向异性.最佳样品磁性层厚度仅为0.8 nm,样品总厚度在5 nm以内,可更为深入的研究其与元件的集成性. Co/Ni multilayers with Pt underlayers have been prepared by magnetron sputtering technique, and their perpen- dicular magnetic anisotropy (PMA) was studied by the anomalous Hall effect (AHE). The PMA of the samples can be studied by the intensity of Hall signal (RHall), remanence ratio (Mr/Ms), coercivity (Hc) and the squareness of the samples in the Hall hysteresis loops. A clear PMA is observed in the as-deposited amorphous Co/Ni multilayers. The PMA of Co/Ni multilayers is strongly dependent on the thicknesses of Pt, Co, and Ni, and the number of Co/Ni bilayers. After testing, the thicknesses of Pt, Co, and Ni, and the periodic number (n) of Co/Ni bilayers are determined to be 2 nm, 0.2 nm, 0.4 nm and 1 respectively. The optimum Co/Ni multilayer with excellent performance of PMA has a structure expressed as Pt(2)/Co(0.2)/Ni(0.4)/Co(0.2)/Pt(2). The hysteresis loop of the sample with the field applied in plane is tested, showing the characteristics of hard axis typically. PMA can be measured by the anisotropy constant Keff which is determined by the competition of the interface anisotropy to the volume anisotropy. If the interface anisotropy is dominant, the sample will have PMA. The anisotropy constant Keff of Pt(2)/Co(0.2)/Ni(0.4)/Co(0.2)/Pt(2) is 3.6 × 10^5 J/m3, illustrating that it has an excellent PMA, and the interface anisotropy of Co/Ni is the main factor that makes Keff a larger value. Since the thickness of magnetic layer in the optimum sample is only 0.8 nm and the total thickness of it less than 5 nm, the integration of the device can be studied further. Frthermore, the coercivity of an optimum Co/Ni multilayered sample is relatively small and can be increased by inserting an oxidation layer or by other ways.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第9期489-493,共5页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11174020) 北京市大学生科研计划(批准号:SJ201402045)资助的课题~~
关键词 Co/Ni多层膜 垂直磁各向异性 反常霍尔效应 各向异性常数 Co/Ni multilayers, perpendicular magnetic anisotropy, anomalous Hall effect, anisotropy constant
  • 相关文献

参考文献32

  • 1Liu L,Moriyama T,Ralph D C,Buhrman R A 2009 Appl.Phys.Lett.94 122508.
  • 2Mangin S,Ravelosona D,Katine J A,Carey M J,Terris B D 2006 Nat.Mater.5 210.
  • 3Meng H,Wang J P 2006 Appl.Phys.Lett.88 172506.
  • 4Kou S P,Lu R,Liang J Q 2003 Chin.Phys.Lett.19 1525.
  • 5余睿,张薇,翁红明,戴希,方忠.磁性拓扑绝缘体中的量子化反常霍尔效应——无需外磁场的量子化霍尔效应[J].物理,2010,39(9):618-623. 被引量:25
  • 6Kohn W,Luttinger J M 1957 Phys.Rev.108 590.
  • 7Luttinger J M 1958 Phys.Rev.112 739.
  • 8Berger L 1970 Phys.Rev.B 2 4959.
  • 9Smith J 1973 Phys.Rev.B 8 2349.
  • 10Berger L 1973 Phys.Rev.B 8 2351.

二级参考文献48

  • 1李宝河,黄阀,杨涛,冯春,翟中海,朱逢吾.垂直取向FePt/Ag纳米颗粒薄膜的结构和磁性[J].物理学报,2005,54(8):3867-3871. 被引量:7
  • 2Liu C X etal. Phys. Rev. B, 2010,81:041307.
  • 3Van Vleck J H. The Theory of Electronic and Magnetic Susceptibilities. London :Oxford Univ. Press, 1932.
  • 4Kulbachinskii Vet al. JETP Lett. , 2001,73.-352.
  • 5DyckJ S, HdjekP, Lost'ak P etal. Phys. Rev. B, 2002, 65:115212.
  • 6Chien Y J. Thesis. University of Michigan, Ann Arbor, MI, 2007.
  • 7Sato K, Dederichs P H, Katayama-Yoshida H et al. Physica B, 2003,863:340.
  • 8Yu P, etal. Science, 2010,329:61.
  • 9Hall E H. Philos. Mag. , 1880,10:301.
  • 10Hall E H. Philos. Mag. , 1881,12:157.

共引文献28

同被引文献36

  • 1Zi-Yi Zhu,Li Meng,Leng Chen.Strain-induced martensitic transformation in biomedical Co-Cr-W-Ni alloys[J].Rare Metals,2020,39(3):241-249. 被引量:7
  • 2李宝河,黄阀,杨涛,冯春,翟中海,朱逢吾.垂直取向FePt/Ag纳米颗粒薄膜的结构和磁性[J].物理学报,2005,54(8):3867-3871. 被引量:7
  • 3杜朝锋,黄英,秦秀兰.纳米磁性薄膜的研究进展[J].兵器材料科学与工程,2007,30(2):75-81. 被引量:4
  • 4Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D. Current-induced magnetization reversal in nano- pillars with perpendicular anisotropy [ J ]. Nature Ma- ter. , 2006, 5(2) : 210.
  • 5Meng H, Wang J P. Spin transfer in nanomagnetic de- vices with perpendicular anisotropy [ J ]. Appl. Phys. Lett., 2006, 88(17) : 172506.
  • 6Kou S P, Lu R, Liang J Q, Chin. An extended effective potential method with topological phase of spin tunneling [J]. Chinese Physics Letters, 2003, 19(10) : 1525.
  • 7Kohn W, Luttinger J M. Quantum theory of electrical transport phenomena [J]. Physical Review, 1957, 108 (3) :590.
  • 8Luttinger J M. Theory of the Hall effect in ferromagnet- ic substances [ J]. Physical Review, 1958, 112 (3) : 739.
  • 9Berger L. Side-jump mechanism for the Hall effect of ferromagnets [ J ]. Physical Review B, 1970, 2 ( 11 ) : 4959.
  • 10Jan Smith. Side-jump and side-slide mechanisms for ferromagnetic Hall effect [ J ]. Physical Review B, 1973, 8(5): 2349.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部