期刊文献+

一维扩展离子Hubbard模型的相图研究 被引量:1

Phase diagram of the one-dimensional extended ionic Hubbard model
原文传递
导出
摘要 应用密度矩阵重整化群方法,研究了存在交错离子势△时一维半满扩展Hubbard模型的相图.通过计算关联函数、结构因子、位置算符等方法,描绘了从Mott绝缘体-键有序绝缘体-Band绝缘体的特性并给出了精确的相边界.研究发现:中间的键有序绝缘体相在相图中占据了很小的一部分区域,当存在离子势△的情况下,这个区域将会有所增大;而当相互作用足够强时,这个中间相消失.给出了离子Hubbard模型(最近邻电子-电子相互作用=0)的相图. We use a density-matrix renormalization group method to study quantitatively the phase diagram of the half-filled one-dimensional (1D) extended Hubbard model in the presence of a staggered ionic potential △. An extensive finite-size scaling analysis is carried out on the relevant structure factors and localization operator to characterize the Mott-insulator (MI)-bond-ordered insulator (BOI)-band-insulator (BI) transitions. The intermediate BOI phase occupies a small region of the phase diagram, and this region is enlarged in the presence of △. In addition, the phase diagram of ionic Hubbard (the nearest-neighbor electron-electron interaction V = 0) is also given.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第10期213-218,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11474218)资助的课题~~
关键词 密度矩阵重整化群 HUBBARD模型 量子相变 相图 density-matrix renormalization group, Hubbard model, quantum phase transition, phasediagram
  • 相关文献

参考文献37

  • 1Manmana S R, Meden V, Noack R M, Sch?nhammer K 2004 Phys. Rev. B 70 155115.
  • 2Batista C D, Aligia A A 2004 Phys. Rev. Lett. 92 246405.
  • 3Garg A, Krishnamurthy H R, Randeria M 2006 Phys. Rev. Lett. 97 046403.
  • 4Fuhrmann A, Heilmann D, Monien H 2006 Phys. Rev. B 73 245118.
  • 5Paris N, Bouadim K, Hebert F, Batrouni G G, Scalettar R T 2007 Phys. Rev. Lett. 98 046403.
  • 6Kancharla S S, Dagotto E 2007 Phys. Rev. Lett. 98 016402.
  • 7Greiner M, Mandel O, Esslinger T, H?nsch T W, Bloch I 2002 Nature 415 39.
  • 8Hubbard J, Torrance J B 1981 Phys. Rev. Lett. 47 1750.
  • 9Nagaosa N, Takimoto J 1986 J. Phys. Soc. Jpn. 55 2735.
  • 10Egami T, Ishihara S, Tachiki M 1993 Science 261 1307.

同被引文献18

  • 1HUBBARD J.Electron correlations in narrow energy bands[J].Proc Roy Soc 1963,276(1365):238-257.
  • 2李正中.固体理论[M].北京:高等教育出版社,2006.
  • 3SACHDEV S.Quantum phase transitions[M].Oxford:Cambridge University Press,2011.
  • 4AFFLECK I,MARSTON J B.Large n limit of the Heisenberg-Hubbard model:Implications for high-Tc superconductors[J].Phys Rev B,1988,37(7):3774-3777.
  • 5GEORGES A,KOTLIAR G.Hubbard model in infinite dimensions[J].Phys Rev B,1992,45(12):6479-6483.
  • 6MURMANN S,BERGSCHNEIDER A,KLINKHAMER V M,et al.Two fermions in a double well:Exploring a fundamental building block of the Hubbard model[J].Phys Rev Letts,2015,114:Art 080402,5pp.
  • 7JOHNSON T H,YUAN Y,BAO W,et al.Hubbard model for atomic impurities bound by the vortex lattice of a rotating Bose-Einstein condensate[J].Phys Rev Letts,2016,116:Art 240402,5pp.
  • 8HART R A,DUARTE P M,YANG T L,et al.Observation of anti ferromagnetic correlations in the Hubbard model with ultracold atoms[J].Nature,2015,519(7542):211-214.
  • 9FISHER M P,WEICHMAN P B,GRINSTEIN G,et al.Boson localization and the superfluid-insulator transition[J].Phys Rev B,1989,40(1):546-570.
  • 10JAKSCH D,BRUDER C,CIRAC J I,et al.Cold bosonic atoms in optical lattices[J].Phys Rev Letts,1998,81(15):3108-3111.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部