期刊文献+

旋转方形散射体对三角晶格磁振子晶体带结构的优化

Spin-wave band gaps created by rotating square rods in triangular lattice magnonic crystals
原文传递
导出
摘要 用改进的平面波展开法数值计算了正方形散射体三角排列的二维磁振子晶体当散射体旋转时的带结构.结果显示,同样的填充率下,旋转正方柱散射体可以在新的频率范围内打开更多的带隙,或者使低频带隙加宽.说明旋转散射体可以有效地优化带隙. Recently, magnonic crystals which are the magnetic counterparts of photonic crystals or phononic crystals are becoming a hot area of research. In this paper, band structure of two-dimensional magnotic crystal composed of square rods triangularly arranged are calculated by using the plane-wave expansion method. Spimwave band structures of two-dimensional magnonic crystal composed of Fe triangularly arranged Fe in an EuO matrix. The results show that when the filling ratio f = 0.4, only two absolute band gaps can be found in the case of ~ -- 0~. The first gap appears between the first band and the second band, the second gap between the sixth band and the seventh band. However, the number of band gaps can be improved by rotating the square rods through ~ ^-- 25~, there are eight absolute band gaps that can be found. The first gap appears between the first band and the second band, the fifth gap between the sixth band and the seventh band. The new band gaps can be found, the second gap appears between the third band and the fourth band, the third gap between the fourth band and the fifth band, the fourth gap between the fifth band and the sixth band, the sixth gap between the seventh band and the eighth band, the seventh gap between the eighth band and the ninth band, the eighth gap between the ninth band and the tenth band. These results show that it is possible to create spin-wave gaps by rotating square rods in a two-dimensional magnotic crystal. The numerical results of the normalized gap width △Ω/Ωg of the first gap between the first band and the second band always changes with filling fraction f and rotational angles 8. When f = 0.6 we calculated the first normalized gap width △Ω/Ωg. when f = 0.6 and θ = 0°, the first gap width △Ω = 0.812(μoω/g) and the normalized gap width △Ω/Ωg = 0.9187. The results show that from the first normalized gap widths the largest one can be found when f = 0.6 and θ = 5°, the first gap width △Ω = 0.937(μoω/g) and the normalized gap width △Ω/Ωg = 0.9591. The results show that the numerical, rotating square rods can make the low frequency band gap widen in the triangular lattice of two-dimensional magnonic crystal.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第10期250-254,共5页 Acta Physica Sinica
基金 内蒙古自治区高等学校科学技术研究项目(批准号:NJZY13281)资助的课题~~
关键词 磁振子晶体 带隙 平面波展开法 magnonic crystals, band gap, plane-wave expansion method
  • 相关文献

参考文献17

  • 1Krawczyk M, Puszkarski H 2008 Phys. Rev. B 77 054437.
  • 2Tacchi S, Duerr G, Klos J W, Madami M, Neusser S, Gubbiotti G, Carlotti G, Krawczyk M, Grundler D 2012 Phys. Rev. Lett. 109 137202.
  • 3Mamica S, Krawczyk M, Klos J W 2012 Adv. Cond. Mat. Phys. 2012 161387.
  • 4Krawczyk M, Klos J W, Sokolovskyy L, Madami M 2010 J. Appl. Phys. 108 093909.
  • 5Wang Z K, Zhang V L, Lim H S, Ng S C, Kuok M H, Jain S, Adeyeye A O 2009 Appl. Phys. Lett. 94 083112.
  • 6Wang Z K, Zhang V L, Lim H S, Ng S C, Kuok M H, Jain S, Adeyeye A O 2010 ACS Nano 4 643.
  • 7Krawczyk M, Puszkarski H 2008 Phys. Rev. B 77 054437.
  • 8Kuchko A N, Sokolovskii M L, Kruglyak V V 2005 Physica B 370 73.
  • 9Kruglyak V V, Sokolovskii M L, Tkachenko V S, Kuchko A N 2006 J. Appl. Phys. 99 08C906.
  • 10曹永军,云国宏,那日苏.平面波展开法计算二维磁振子晶体带结构[J].物理学报,2011,60(7):700-703. 被引量:27

二级参考文献6

  • 1Wang Z K, Zhang V L, Lira H S, Ng S C, Kuok M H, Jain S, Adeyeye A 0 .2009. Appl. Phys. Lett. 94 083112.
  • 2Puszkarski H, Krawczyk M .2003. Solid State Phenom. 94 125.
  • 3Kruglyak V V, Kuchko A N .2001. Phys. Met. Metallogr, 92 211.
  • 4Krawczyk M, Puszkarski H .2008. Phys. Rev. B 77 054437.
  • 5CaoYJ, YunGH, LiangXX, BaiN.2010.J. Phys. DAppl. Phys. 43 305005.
  • 6Vasseur J O, Dobrzynski L, Djafari-Rouhani B 1996 Phys. Rev. B 54 1043.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部