期刊文献+

基于等时圆矢量差分的ARVMA组合模型及其实证研究 被引量:12

ARVMA PROCESS AND ITS EMPIRICAL RESEARCH BASED ON VECTOR DIFFERENCE IN AN ISOCHRONAL CIRCLE
原文传递
导出
摘要 对于非平稳的时间序列,直接差分会丢失很多有价值的信息,增大建模误差.采用与传统的数学改进方法不同的物理模型,对非平稳时间序列提出了基于矢量差分的ARVMA(Autoregressive Vectorized Moving Average Model)组合模型.借助矢量三角形非线性的可加性以及等时圆中质点沿弦下滑的等时性,构建等时圆中的矢量差分方法和由点出发的时间序列,并用作用力函数的极大值阐释了最大价格的产生机制.然后,利用矢量差分可以减弱过度差分的优良性及差分时一阶自相关系数的自适应性,充分论证了非线性的矢量差分在消除非平稳趋势时可以最大程度地保留原始数据的信息量.最后,对IBM股票日收盘价数据进行实证研究.实证结果表明:等时圆矢量差分方法与直接差分相比预测误差更小. A direct difference method may make data lost a lot of valuable information for non-stationary time series, and it will increase the modelling error. In this paper, the ARVMA (Autoregressive Vectorized Moving Average Model) process is proposed for the modelling of non-stationary time series, which is different from traditional mathematical improvement method. Firstly, with the help of nonlinear additivity for the vector triangle and isochronism for the circle, a vectorial difference method is created and the time series which is from a point is built. Then the maximum value of the power function is used to explain the generation mechanism of the largest price. Next, we employ the effectiveness of reducing the excessive difference and the adjustability of the first order autocorrelation coefficient to demonstrate that the amount of information of the original data is fully preserved when eliminating the non-stationary trend term compared to direct difference method. Finally, IBM stock closing price data are used for empirical research and the empirical results show that the forecast error of vectorial difference method based on isochronal circle is smaller than that of direct difference method.
作者 张昴 郭琨
出处 《系统科学与数学》 CSCD 北大核心 2015年第2期193-205,共13页 Journal of Systems Science and Mathematical Sciences
基金 山东省自主创新及成果转化专项(2014ZZCX03302) 广义虚拟经济专项(GX2011-1001(Z))资助课题
关键词 矢量差分 等时圆 非线性 点出发的序列 ARVMA Vector difference, isochronal circle, non-linear time series, time series from a point, ARVMA.
  • 相关文献

参考文献19

  • 1Cryer J D, Chan K S. Time Series Analysis with Applications in R. Springer Science & Business Media, 1986.
  • 2Box G E P, Cox D R. An analysis of transformation. Journal of the Royal Statistical Society, Series B, 1964, (26): 211-243.
  • 3Granger C W J, Joyeux R. An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis, 1980, (1): 15-29.
  • 4Granger C W J. Long memory relationships and the aggregation of dynamic models. Journal of Econometrics, 1980, (14): 227-238.
  • 5Reisen V A, Lopes S. Some simulations and applications of forecasting long - memory time - seriesmodels. Journal of Statistical Planning and Inference, 1999, 80(1 2): 269- 287.
  • 6金秀,姚瑾,庄新田.基于分数阶差分的ARFIMA模型及预测效果研究[J].数理统计与管理,2007,26(5):896-907. 被引量:19
  • 7刘伟,张德生,郭雄娃,侯晓英.国际黄金价格的基于分数阶差分的FAR预测模型[J].陕西科技大学学报(自然科学版),2013,31(1):160-164. 被引量:1
  • 8Alan S Lapedes, Evan W Steeg, Robert M Farber. Use of adaptive networks to define highly predictable protein secondary-structure classes. Machine Learning, 1995, 21(1 2): 103- 124.
  • 9Cao L J, Tay Feh. Support vector machine with adaptive parameters in financial time series forecasting. IEEE Transactions on Neural Networks, 2003, 14(6): 1506-1518.
  • 10聂淑媛.经济时间序列中差分的历史研究[J].科学技术哲学研究,2012,29(1):70-75. 被引量:4

二级参考文献64

共引文献28

同被引文献78

  • 1Fan Engui E mail:faneg@fudan.edu.cnInstituteofMath.,FudanUniv.,Shanghai200433.TRAVELLING WAVE SOLUTIONS OF NONLINEAR EVOLUTION EQUATIONS BY USING SYMBOLIC COMPUTATION[J].Applied Mathematics(A Journal of Chinese Universities),2001,16(2):149-155. 被引量:4
  • 2刘骏民,王国忠.虚拟经济稳定性、系统风险与经济安全[J].南开经济研究,2004(6):32-39. 被引量:51
  • 3何晓群,刘文卿.应用回归分析[M].北京:中国人民大学出版社,2011.
  • 4徐道宣,石璋铭.一种改进的KLR信号分析法应用研究[J].数量经济技术经济研究,2007,24(11):124-132. 被引量:23
  • 5马德功,张畅,马敏捷.货币危机预警模型理论与中国适用[J].上海金融,2007(12):10-13. 被引量:4
  • 6Yule G U. On a method of investigating periodicities in disturbed series, with special reference to Wolfer's sun- spot numbers[J]. Philosophical Transactions of the Royal Society of London Series A, 1927,226 : 267-298.
  • 7Walker G. On periodicity in series of related terms[J]. Proceedings of the Royal Society of London Series A, 1931,131(818) :518-532.
  • 8Box G E. P, Jenkins, GM. Time series analysis: Forecas- ting and control[M]. San Francisco : Holden-Day, 1976.
  • 9Granger C W J,Andersen A P. An introduction to bilinear time series models[M]. Gottingen: Vandenhoeek & Ru preeht, 1978.
  • 10Engle R F. Autoregressive conditional heteroscedasticlty with estimates of the variance of United Kingdom infla tion[J]. Journal of the Econometric Society, 1982,50 (4) : 987-1007.

引证文献12

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部