期刊文献+

算子矩阵的性质(gω) 被引量:1

PROPERTY(gω) FOR OPERATOR MATRICES
原文传递
导出
摘要 设M_R=(T R O S)是定义在Banach空间X⊕Y上的2×2上三角算子矩阵,则T和S满足性质(gw)(或性质(gb))推不出M_R满足性质(gw)(或性质(gb)),即使R=0.文章主要利用局部谱理论的知识,研究了Banach空间上2×2上三角算子矩阵在什么情况下满足性质(gb)和性质(gw). Suppose MR(TROS) is a 2 × 2 upper triangular matrix on the Banach space X Y, then property (gw) (or property (gb)) holds for T and S need not imply property (gω) (or property (gb)) for MR, even when R = 0. In this paper, we explore how property (gb) and property (gω) survive for 2 × 2 operator matrices on the Banach space.
出处 《系统科学与数学》 CSCD 北大核心 2015年第2期214-220,共7页 Journal of Systems Science and Mathematical Sciences
基金 陕西省自然科学基金资助项目(2014JQ1015) 渭南市科技计划资助项目(2013KYJ-1) 渭南师范学院校级特色学科建设项目(14TSXK02) 陕西省重点扶持学科数学学科资助项目(14SXZD003)资助课题
关键词 性质(gb) 性质(gw) 单值扩张性质 Property (gb), property (gee), single-valued extension property.
  • 相关文献

参考文献20

  • 1Weyl H. Uber gewShnliche lineare Differetialgleichungen mit singul/iren Stellen und ihre Eigen- funktionen. Nachrichten yon der Gesellschaft der Wissenschaften zu G6ttingen, Mathematisch- Physikalische Klasse, 1909, 37-63.
  • 2Coburn L. Weyl's theorem for nonnormal operators. The Michigan Mathematical Journal, 1966, 13(3): 285 288.
  • 3Uchiyama A. Weyl's theorem for class a operators. Mathematical Inequalities and Applications, 2001, 4: 143-150.
  • 4Aiena P, Villafane F. Weyl's theorems for some classes of operators. Integral Equations and Operator Theory, 2005, 53(4): 453-466.
  • 5Harte R, Lee W. Another note on Weyl's theorem. Transactions of the American Mathematical Society, 1997, 349(5): 2115 2124.
  • 6Rakocevic V. Operators obeying a-Weyl's theorem. Rev. Roumaine Math Pures. Appl., 1989, 34(10): 915-919.
  • 7Berkani M, Koliha J. Weyl type theorems for bounded linear operators. Acta Sci. Math. (Szeged), 2003, 69(1 2): 359- 376.
  • 8Rakocevic V. On a class of operators. Mat. Vesnik, 1985, 37(4): 423-426.
  • 9Amouch M, Berkani M. On the property (gw). Mediterranean Journal of Mathematics, 2008, 5(3): 371-378.
  • 10戴磊,曹小红,孙晨辉.广义(ω)性质的一个注记[J].数学学报(中文版),2010,53(2):219-226. 被引量:9

二级参考文献46

  • 1Xiao Hong CAO.A-Browder's Theorem and Generalized a-Weyl's Theorem[J].Acta Mathematica Sinica,English Series,2007,23(5):951-960. 被引量:4
  • 2Weyl H., Uber beschrankte quadratische Formen, deren Differenz vollstetig ist, Rend. Circ. Mat. Palermo, 1909, 27: 373-392.
  • 3Harte R., Lee W. Y., Another note on Weyl's theorem, Trans. Amer. Math. Soc., 1997, 349:2115-2124.
  • 4Rakocevic V., Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl., 1989, 34:915-919.
  • 5Rakocevic V., On a class of operators, Mat. Vesnik, 1985, 37: 423-426.
  • 6Berkani M., Koliha J. J., Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged), 2003, 69:379-391.
  • 7Grabiner S., Uniform ascent and descent of bounded operators, J. Math. Soc. Japan, 1982, 34(2): 317-337.
  • 8Saphar P., Contribution a l'etude des applications lineaires dans un espace de Banach, Bull. Soc. Math. France, 1964, 92: 363-384.
  • 9Kato D., Perturbation Theory for Linear Operator, New York: Springer-Verlag, 1966.
  • 10Goldberg S., Unbounded Linear Operators: Theory and Applications, New York: McGraw Hill, 1966.

共引文献11

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部