期刊文献+

Fabrication of 32 Gb/s Electroabsorption Modulated Distributed Feedback Lasers by Selective Area Growth Technology

Fabrication of 32 Gb/s Electroabsorption Modulated Distributed Feedback Lasers by Selective Area Growth Technology
下载PDF
导出
摘要 A 32 Gb/s monolithically integrated electroabsorption modulated laser is fabricated by selective area growth technology. The threshold current of the device is below 13mA. The output power exceeds 10mW at 0V bias when the injection current of the distributed feedback laser is 100mA at 25℃. The side mode suppression ratio is over 50 dB. A 32Gb/s eye diagram is measured with a 3.SVpp nonreturn-to-zero pseudorandom modulation signal at -2.3 V bias. A clearly opening eyediagram with a dynamic extinction ratio of 8.01 dB is obtained. A 32 Gb/s monolithically integrated electroabsorption modulated laser is fabricated by selective area growth technology. The threshold current of the device is below 13mA. The output power exceeds 10mW at 0V bias when the injection current of the distributed feedback laser is 100mA at 25℃. The side mode suppression ratio is over 50 dB. A 32Gb/s eye diagram is measured with a 3.SVpp nonreturn-to-zero pseudorandom modulation signal at -2.3 V bias. A clearly opening eyediagram with a dynamic extinction ratio of 8.01 dB is obtained.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第5期66-68,共3页 中国物理快报(英文版)
基金 Supported by the National High-Technology Research and Development Program of China under Grant Nos 2011AA010303and 2012AA012203 the National Basic Research Program of China under Grant No 2011CB301702 the National Natural Science Foundation of China under Grant Nos 61321063 and 6132010601
  • 相关文献

参考文献11

  • 1Kotaka I, Wakita K, Okamoto M, Asai H and Kondo Y 1993 IEEE Photon. Technol. Lett. 5 61.
  • 2Aoki M, Takahashi M, Suzuki M, Sano H, Uomi K, Kawano T and Takai A 1992 IEEE Photon. Technol. Lett. 4 580.
  • 3Cheng Y B, Pan J Q, Wang Y, Fan Zhou, Wang B J, Zhao L J, Zhu H L and Wang W 2009 IEEE Photon. Technol. Lett. 21 356.
  • 4Kobayashi W, Arai M, Yamanaka T, Fujiwara N, Fujisawa T, Tadokoro T, Tsuzuki K, Kondo Y and Kano F 2010 J. Lightwave Technol. 28 164.
  • 5Hou L P, Tan M, Haji M, Eddie I and Marsh J H 2013 IEEE Photon. Technol. Lett. 25 1169.
  • 6Cheng Y B, Pan J Q, Zhou F, Zhu H L, Zhao L J and Wang W 2007 Chin. Phys. Lett. 24 2128.
  • 7Li B X, Zhu H L, Zhang J, Zhao Q, Pian J Q, Ding Y, Wang B J, Bian J, Zhao L J and Wang W 2005 Semicond. Sci. Technol. 20 917.
  • 8Zhou D B, Zhang R K, Wang H T, Wang B J, Bian J, An X, Zhao L J, Zhu H L, Ji C and Wang W 2014 Photonics Asia (Beijing 8–11 October 2014) p 926714.
  • 9Zhang C, Liang S, Zhu H L, Han L S, Lu D and Ji C 2013 Opt. Commun. 311 6.
  • 10Lee S H, Ahn J H, Oh Y K, Ma J S, Choo A G, Kim T I, Kim Y and Jeong J 2001 IEEE Trans. Adv. Packag. 24 407.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部