期刊文献+

THE IMPROVED RECONSTRUCTION METHOD FOR NONUNIFORM ATTENUATED SPECT DATA 被引量:1

THE IMPROVED RECONSTRUCTION METHOD FOR NONUNIFORM ATTENUATED SPECT DATA
下载PDF
导出
摘要 In this article, we study reconstruction of nonuniform attenuated SPECT data and present analytic reconstruction formulae which are similar to Novikov's inversion formula. Furthermore, we extend Natterer's results. In this article, we study reconstruction of nonuniform attenuated SPECT data and present analytic reconstruction formulae which are similar to Novikov's inversion formula. Furthermore, we extend Natterer's results.
机构地区 Faculty of Science
出处 《Acta Mathematica Scientia》 SCIE CSCD 2015年第3期527-538,共12页 数学物理学报(B辑英文版)
基金 supported by the National Natural Science Foundation of China(61271398) Natural Science Foundation of Zhejiang Province(LY14A010004) K.C.Wong Magna Fund in Ningbo University
关键词 Nonuniform attenuated SPECT data attenuated Radon transform Novikov'sinversion formula Nonuniform attenuated SPECT data attenuated Radon transform Novikov'sinversion formula
  • 相关文献

参考文献1

二级参考文献17

  • 1Novikov R G. An explicit inversion formula for the attenuated X-ray transform. Ark Mat, 2002, 40: 145-167.
  • 2Natterer F. Inversion of the attenuated Radon transform. Inverse Problems, 2001, 17:113-119.
  • 3Novikov R G. On the range characterization for the two-dimensional attenuated x-ray transformation. Inverse Problems, 2002, 18:677-700.
  • 4Bukhgeim A A, Kazantsev S G. Inversion fornmla for the fan-beam attenuated Radon transform in a unit disk. Sobolev Institute of Math, 2002:3-33.
  • 5Arzubov E V, Bukhgeim A L, Kazantsev S G. Two dimensional tomography problem and the theory of A-analytic functions. Siberian Adv Math, 1998, 8:1-20.
  • 6Guillement J P, Jauberteau F, Kunyansky L, Novikov R, Trebossen R. On single-photon emission com- puted tomography imaging based on an exact formula for the nonuniform attenuated correction. Inverse Problems, 2002, 18:Lll-L19.
  • 7Kunyansky L A. A new SPECT reconstruction algorithm based on the Novikov's explicit inversion formula. Inverse Problems, 2001, 17:293-306.
  • 8Xian J. Weighted sampling and reconstruction in weighted reproducing kernel spaces. J Math Anal Appl, 2010, 367(1): 34 42.
  • 9Xian J, Luo S P, Lin W. Weighted sampling and signal reconstruction in spline subspaces. Signal Process- ing, 2006, 86:331-340.
  • 10Xian J. Local sampling set conditions in weighted shift-invariant signal spaces. Appl Anal, 2012, 91(3): 447 457.

共引文献2

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部