期刊文献+

ASYMPTOTIC BEHAVIOR OF THE STOKES APPROXIMATION EQUATIONS FOR COMPRESSIBLE FLOWS IN R^3 被引量:1

ASYMPTOTIC BEHAVIOR OF THE STOKES APPROXIMATION EQUATIONS FOR COMPRESSIBLE FLOWS IN R^3
下载PDF
导出
摘要 We consider the Stokes approximation equations for compressible flows in /~3. The global unique solution and optimal convergence rates are obtained by pure energy method provided the initial perturbation around a constant state is small. In particular, the optimal decay rates of the higher-order spatial derivatives of the solution are obtained. As an imme- diate byproduct, the usual Lp - L2(1 〈 p 〈 2) type of the optimal decay rate follow without requiring that the Lp norm of initial data is small. We consider the Stokes approximation equations for compressible flows in /~3. The global unique solution and optimal convergence rates are obtained by pure energy method provided the initial perturbation around a constant state is small. In particular, the optimal decay rates of the higher-order spatial derivatives of the solution are obtained. As an imme- diate byproduct, the usual Lp - L2(1 〈 p 〈 2) type of the optimal decay rate follow without requiring that the Lp norm of initial data is small.
作者 吴云顺 谭忠
出处 《Acta Mathematica Scientia》 SCIE CSCD 2015年第3期746-760,共15页 数学物理学报(B辑英文版)
基金 Supported by National Natural Science Foundation of China(11271305,11161011) Science and Technology Foundation of Guizhou Province of China(LKS[2012]11,LKS[2013]03,LKS[2013]05)
关键词 Stokes approximation equations energy method optimal decay rates Sobolevinterpolation negative Sobolev space Stokes approximation equations energy method optimal decay rates Sobolevinterpolation negative Sobolev space
  • 相关文献

参考文献4

二级参考文献59

  • 1LiuYanhong ZhuChangjiang.DECAY RATES AND CONVERGENCE OFSOLUTIONS TO SYSTEM OF ONE-DIMENSIONAL VISCOELASTIC MODEL WITH DAMPING[J].Acta Mathematica Scientia,2004,24(3):469-484. 被引量:2
  • 2Bae H O, Choe H J. Decay rate for the incompressible flows in half spaces. Math Z, 2001, 238:799-816.
  • 3Borchers W, Miyakawa T. L^2 decay rate for the Navier-Stokes flow in half spaces. Math Ann, 1988, 282 : 139-155.
  • 4Bresch D, Desjardins B. Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Comm Math Phys, 2003, 238(1/2): 211 223.
  • 5Bresch D, Desjardins B, Lin C K. On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Comm Partial Differential Equations, 2003, 28(3/4): 843-868.
  • 6Cai X J, Jiu Q S. Weak and strong solutions for the incompressible Navier-Stokes equations with damping term. J Math Anal Appl, 2008, 343:799-809.
  • 7Caffarelli L , Kohn R, Nirenberg L. Partial regularity of suitably weak solutions of the Navier-Stokes equations. Comm on Pure and Applied Math, 1982, 25:771-831.
  • 8He C. The Cauchy problem for the Navier-Stokes equations. J Math Anal App, 1997, 209:228-242.
  • 9He C, Miyakawa T. On weighted-norm estimates for nonstationary incompressible Navier-Stokes flows in a 3D exterior domain. J Differential equations, 2009, 246(6): 2355-2386.
  • 10He C, Wang L Z. Weighted L^P-estimates for Stokes flow in R+^n(n≥2), with applications to the Nora stationary Navier-Stokes flow. Preprint.

共引文献7

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部