期刊文献+

Spherical Scattered Data Quasi-interpolation by Gaussian Radial Basis Function 被引量:2

Spherical Scattered Data Quasi-interpolation by Gaussian Radial Basis Function
原文传递
导出
摘要 Since the spherical Gaussian radial function is strictly positive definite, the authors use the linear combinations of translations of the Gaussian kernel to interpolate the scattered data on spheres in this article. Seeing that target functions axe usually outside the native spaces, and that one has to solve a large scaled system of linear equations to obtain combinatorial coefficients of interpolant functions, the authors first probe into some problems about interpolation with Gaussian radial functions. Then they construct quasi- interpolation operators by Gaussian radial function, and get the degrees of approximation. Moreover, they show the error relations between quasi-interpolation and interpolation when they have the same basis functions. Finally, the authors discuss the construction and approximation of the quasi-interpolant with a local support function.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2015年第3期401-412,共12页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China(Nos.61272023,61179041)
关键词 Scattered data APPROXIMATION Spherical Gaussian radial basis function Modulus of continuity 径向基函数 高斯函数 插值 散乱数据 球形 线性方程组 线性组合 目标函数
  • 相关文献

参考文献29

  • 1Boyd, J. P., Error saturation in Gaussian radial basis function functions on a finite interval, J. Comput. Applied Math., 234, 2010, 1435-1441.
  • 2Boyd, J. P. and Wang, L., An analytic approximation to the cardinal functions of Gaussian radial basis functions on a one-dimensional infinite uniform lattice, Appl. Math. Comput., 215, 2009, 2215-2223.
  • 3Buhmann, M. D., Radial Basis Functions: Theory and Implementations, Cambridge Monographs on Ap- plied and Computational Mathematics, Vol. 12, Cambridge University Press, Cambridge, UK, 2003.
  • 4Cao, F. L., Guo, X. F. and Lin, S. B., Lp error estimates for scattered data interpolation on spheres, Numerical F~nctional Analysis and Optimization, 32(12), 2011, 1205-1218.
  • 5Cavoretto, R. and De Rossi, A., Fast and accurate interpolation of large scattered data sets on the sphere, J. Comput. Appl. Math., 234, 2010, 1505-1521.
  • 6Chen, D., Menegatto, V. A. and Sun, X., A necessary and sufficient condition for strictly positive definite functions on spheres, Proc. Amer. Math. Soc., 131, 2003, 2733-2740.
  • 7Fasshauer, G. and Schumaker, L. L., Scattered data fitting on the sphere, Mathematical Methods for Curves and Surfaces II (M. Dmhlen, T. Lyche and L. L. Schumaker, eds), Vanderbilt University Press, Nashville, 1998.
  • 8Freeden, W., Gervens, T. and Schreiner, M., Constructive Approximation on the Sphere, Oxford University Press, New York, 1998.
  • 9Jetter, K., StSckler, J. and Ward, J., Error estimates for scattered data interpolation on spheres, Math. Comput., 68, 1999, 733-747.
  • 10Kress, R., Numerical Analysis, Springer-Verlag, New York, 1998.

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部