期刊文献+

A Relation in the Stable Homotopy Groups of Spheres

A Relation in the Stable Homotopy Groups of Spheres
原文传递
导出
摘要 Let p ≥ 7 be an odd prime. Based on the Toda bracket 〈α1β1^p-1, α1β1,p, γs〉, the authors show that the relation α1β1^P-1h2,0γs= βp/p-1γ/s holds. As a resulL they can obtain α1β1^ph2,0γs= 0 ∈ π*(S^0) for 2 ≤ s ≤ p - 2, even though α1h2,0γs and β1α1h2,0γs are not trivial. They also prove that β1^p-1 α1h2,0γ3 is nontrivial in π*(S^0) and conjecture β1^p-1 α1h2,0γs is nontrivial in π*(S^0) for 3 ≤s ≤ p - 2. Moreover, it is known that βp/p-1γ3 = 0 ∈ EXtBP*Bp^5,*(BP*, BP*), but βp/p-1γ3 is nontrivial in π*(S^0) and represents the element β1^p-1α1h2,0γ3.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2015年第3期413-426,共14页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China(Nos.11071125,11261062,11471167) the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120031110025)
关键词 Toda bracket Stable homotopy groups of spheres Adams-Novikovspectral sequence Method of infinite descent 稳定同伦群 Delta 奇素数 ph2 BP pi
  • 相关文献

参考文献1

二级参考文献5

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部