期刊文献+

Convolutions, Tensor Products and Multipliers of the Orlicz-Lorentz Spaces

Convolutions, Tensor Products and Multipliers of the Orlicz-Lorentz Spaces
原文传递
导出
摘要 In this paper, the authors first give the properties of the convolutions of Orlicz- Lorentz spaces Aφ1,w and Aφ2,w on the locally compact abelian group. Secondly, the authors obtain the concrete representation as function spaces for the tensor products of Orlicz-Lorentz spaces Aφ1,w and Aφ2,w, and get the space of multipliers from the space Aφ1,w to the space Mφ2.w. Finally, the authors discuss the homogeneous properties for the Orlicz-Lorentz space Aφ,w^p,q.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2015年第3期467-484,共18页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China(Nos.11401530,11461033,11271330) the Natural Science Foundation of Zhejiang Province(No.LQ13A010018)
关键词 Orlicz-Lorentz spaces CONVOLUTION Tensor products MULTIPLIERS Hardyoperator Lorentz空间 张量积 卷积 洛伦兹空间 乘子 阿贝尔群 功能空间 局部紧
  • 相关文献

参考文献3

二级参考文献30

  • 1Andersen K F. Weighted generalized Hardy inequalities for nonincreasing functions. Canad J Math, 1991, 43: 1121-1135.
  • 2Ando Tsuyoshi. On some properties of convex functions. Bull Acad Polon Sci S-r Sci Math Astronom Phys, 1960, 8: 413-418.
  • 3Arifio M A, Muckenhoupt B. Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions. Trans Amer Math Soc, 1990, 320:727-735.
  • 4Bloom S, Kerman R. Weighted Lp modular inequalities for operators of Hardy type. Studia Math, 1994, 110:35-52.
  • 5Bloom S, Kerman R. Weighted Orlicz space modular inequalities for the Hardy-Littlewood maximal operator. Studia Math, 1994, 110:149-167.
  • 6Bennett C, Sharpley R. Interpolation of Operators. In: Pure and Applied Mathematics, vol. 129. Boston, MA: Academic Press, 1988.
  • 7Carro M, Garcfa del Amo A, Soria J. Weak type weights and normable Lorentz spaces. Proc Amer Math Soc, 1996, 124:849 857.
  • 8Carro M J, Raposo J A, Soria J. Recent Developements in the Theory of Lorentz Spaces and Weighted Inequalities. Mere Amer Math Soc, 187. Providence, RI: Amer Math Soc, 2007.
  • 9Carro M J, Soria J. Weighted Lorentz spaces and the Hardy operator. J Funct Anal, 1993, 112:480 494.
  • 10Carro M J, Soria J. Boundedness of some integral operators. Canad J Math, 1993, 45:1155-1166.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部