期刊文献+

基于质量相关的间歇过程故障监测及故障变量追溯 被引量:2

Quality-related Fault Monitoring and Fault Variable Tracing Based on Bacth Process
下载PDF
导出
摘要 针对多向核熵偏最小二乘(multi-way kernel entropy partial least squares,MKEPLS)利用的是数据的一阶和二阶统计特性未考虑数据的高阶统计特性,在进行特征提取时会造成有用数据丢失的问题,提出基于高阶统计量的多向核熵偏最小二乘方法(higher order statistics multi-way kernel entropy partial least squares,HOS-MKEPLS).首先,通过构造样本的高阶统计量将数据从原始的数据空间映射到高阶统计量样本空间.然后,再建立MKEPLS监控模型进行质量相关的故障监控,当监控到有故障发生时进行故障变量的追溯.最后,将该方法应用到工业青霉素发酵过程的监测中并与MKEPLS进行比较.结果表明:该方法具有更好的监控和故障识别性能. As the multi-way kernel entropy partial least squares(MKEPLS) method does not make full use of the higher-order statistics of the process data,which will lose the important information in the feature extraction,and result in degraded fault identification performance.To solve this problem,a novel method based on higher order statistics and multi-way kernel entropy partial least squares(HOSMKEPLS) is proposed,in which the raw data space is projected into statistics space by calculating the higher order statistics of the data set,establishing the monitoring MKEPLS model,then adopting the contribution figure method on the trace of the fault variables.Finallay,the method is applied to an industrial penicillin fermentation process,and compared with the MKEPLS model.Results show that the method has a better monitoring performance and can detect and identify the fault.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2015年第5期668-673,共6页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(61174109) 高等学校博士学科点专项科研基金资助项目(20101103110009)
关键词 间歇过程 多向核熵偏最小二乘 高阶统计量 故障监测 故障变量追溯 batch process multi-way kernel entropy partial least squares (MKEPLS) higer order statistics fault monitoring fault variable tracing
  • 相关文献

参考文献19

  • 1常鹏,王普,高学金,齐咏生.基于核熵投影技术的多阶段间歇过程监测研究[J].仪器仪表学报,2014,35(7):1654-1661. 被引量:12
  • 2常鹏,王普,高学金.基于核熵投影技术的微生物制药生产过程监测[J].信息与控制,2014,43(4):490-494. 被引量:7
  • 3齐咏生,王普,高学金,陈修哲.基于多阶段动态PCA的发酵过程故障监测[J].北京工业大学学报,2012,38(10):1474-1481. 被引量:10
  • 4CHEN J H, WANG W Y. Performance monitoring of MPCA based control for muhivariable batch control processes [ J ]. Taiwan Institute of Chemical Engineers, 2010, 41(4) : 465-474.
  • 5DARWISH H W, ATTIA M I, ABDELHAMMEED A S, et al. Comparative ANNs with different input layers and GA- PLS study for simultaneous spectrofluorimetric determination of melatonin and pyridoxine HC1 in the presence of melatonin's main impurity [ J ]. Molecules, 2013, 18(1) : 974-996.
  • 6GEERT G, JEF V, JAN F. Discriminating between critical and nncritical disturbances in (Bio) chemical bach processes prediction Research, NAES T, using m [J]. ulti-model fault detection and end-quality Industrial and Engineering Chemistry 2012, 51(1) : 1237-1238.
  • 7TOMIC O. Multi-block regression based on combination so for thogonalisation, PLS regressionand canonical correlation analysis [ J ]. Chemometrics and Intelligent Laboratory Systems, 2013, 124: 32-42.
  • 8CHOI S W, LEE I B. Mutilblock PLS based localized process diagnosis[ J]. Journal of Process Control, 2005, 3 ( 1 ) .. 295-306.
  • 9MORI J C, YU J. Quality relevant nonlinear batch process performance monitoring using a kernel based multiway non- Gaussian latent subspace projection approach [ J]. Journal of Process Control, 2014, 24 ( 1 ) : 57-71.
  • 10ZHANG Y W, HU Z Y. Multivariate process monitoring and analysis based on multi-scale KPLS [ J ]. Chemical Engineering Research & Design, 2011, 89 (12): 2667- 2678.

二级参考文献73

  • 1陆宁云,王福利,高福荣,王姝.间歇过程的统计建模与在线监测[J].自动化学报,2006,32(3):400-410. 被引量:61
  • 2AGUADO D, FERRER A. Multivariate SPC of a sequencing batch reactor for wastewater treatment [ J ]. Chemometrics and Intelligent Laboratory Systems, 2007, 85(1) : 82-93.
  • 3CHEN J, CHEN H H. On-line batch process monitoring using MHMT-based MPCA [ J]. Chemical Engineering Science, 2006, 61(10): 3223-3239.
  • 4CAMACHO J, PICO J. Multi-phase principal component analysis for batch processes modeling [ J]. Chemometrics and Intelligent Laboratory Systems, 2006, 81 (2) : 127- :136.
  • 5RANNAR S, MACGREGOR J F, WOLD S. Adaptive batch monitoring using hierarchical PCA [ J ]. Chemometrics and Intelligent Laboratory Systems, 1998, 41(1): 73-81.
  • 6LU N, GAO F, WANG F. Sub-PCA modeling and on-line monitoring strategy for batch processes [ J ]. AIChE Journal, 2004, 50( 1): 255-259.
  • 7YU J, QIN S J. Multiway Gaussian mixture model based muhiphase batch process monitoring [ J]. Ind Eng Chem Res, 2009, 48(18) : 8585-8594.
  • 8YU J, QIN S J. Multimode process monitoring with Bayesian inference - based finite Gaussian mixture models [J]. AIChE Journal, 2008, 54(7): 1811-1829.
  • 9RAMAKER H J, ERIC N M, JOHAN A W, et al. Dynamic time warping of spectroscopic batch data [ J ]. Analytica Chimica Acta, 2003, 498(1/2) : 133-153.
  • 10SRINIVASAN R, QIAN M S. Online fauh diagnosis and state identification during process transitions using dynamic locus analysis [ J ]. Chemical Engineering Science, 2006, 61(18) : 6109-6132.

共引文献35

同被引文献11

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部