期刊文献+

平面铝板上的压电振动除冰方法 被引量:5

Vibration de-icing method with piezoelectric actuators on flat aluminum plate
原文传递
导出
摘要 以平面铝板为对象,对压电振动除冰方法进行了理论与实验研究。使用有限元方法(FEM)分析了压电片(PZT)长度和厚度对所激发结构模态振动强度的影响。建立了冰层的二维受力模型,分析接触面上的切应力分布,为除冰模态的选取提供指导。结果表明,理想情况下当PZT长度约为某模态半波长的奇数倍时,对该模态的激发效果最好,此外压电片长度还受到结构表面应变分布的影响。在满足强度要求的前提下,压电片厚度应尽量小。结构与冰接触面上的最大切应力出现在结冰边缘部位,大小与结构表面的应变有关,在振动节线附近的切应力最小。实验获得了较好的验证结果,除冰功率约为36.5 W/m^2,比电热除冰方法的功耗低1-2个量级。 This work presents the analytic and experimental research of a kind of de-icing method with piezoelectric trans- ducer as actuators. The whole work is conducted on a flat aluminum plate. The finite element method (FEM) is used to get the relationships between the length and thickness of piezoelectric ceramic transducer (PZT) and the vibration intensity of the modes being excited. Two-dimensional analytic model is derived for ice bonded to the plate. This model leads to the ability to predict the shear stress along the bond layer between ice and plate and gives guidance as to the choice of modes of vibration for de-icing. The results show that for a certain mode the maximum excitation will happen when the PZT length is an odd integer multiple of the half wavelength of that mode. Actually the length will be a little affected by the strain distribution on the surface of plate. The thickness of PZT should be thin as long as the strength requirements are met. The maximum shear stress on the bond layer concentrates on the edge of length direction, and the amplitude depends upon the strain on the surface of plate under the edge of ice. Generally, minimum shear stress is produced around the stagnation line of certain mode. These conclusions are verified by a set of de-icing experiments and the power consumption is about 36.5 W/m^2, which is lower than that of electro-thermal de-icing method by one to two orders of magnitude.
出处 《航空学报》 EI CAS CSCD 北大核心 2015年第5期1564-1573,共10页 Acta Aeronautica et Astronautica Sinica
基金 611航空科研基金 上海高校青年教师培养资助计划专项基金(ZZGJD13033)~~
关键词 压电 除冰 剪切应力 有限元方法 振动 piezoelectric de-icing shear stress finite element method vibration
  • 相关文献

参考文献19

  • 1Thomas S, Cassoni R, MacArthur C. Aircraft anti-icing and de-icing techniques and modeling[J]. Journal of Air- craft, 1996, 33(5): 841-854.
  • 2Hoadley A, Pederson E. Prediction of airfoil stall in icing conditions using wing surface pressures[J]. Journal of Aircraft, 2001, 39(2): 326.
  • 3Lee S, Bragg M B. Investigation of factors affecting iced- airfoil aerodynamics[J]. Journal of Aircraft, 2003, 40 (3) : 499-508.
  • 4李国知,曹义华.旋翼结冰对直升机飞行动力学特性的影响[J].航空学报,2011,32(2):187-194. 被引量:14
  • 5Han Y Q, Palacios J. Analytical and experimental deter-ruination of airfoil performance degradation due to ice ac- cretion[C]//4th AIAA Atmospheric and Space Environ- ments Conferenc. Reston: AIAA, 2012.
  • 6刘根林,沈海军.飞机防冰与除冰技术综述[J].江苏航空,2003(4):18-20. 被引量:16
  • 7Zumwalt G W, Schrag R L. Analysis and tests for design of an electro-impulse de-icing system, NASA CR-174919 [R]. Washington, D. C.: Wichita State University, 1985.
  • 8Haslim L A, Lee R D. Electro-expulsive separation sys- tem: United States, 4690353[E]1. 1987-09-01.
  • 9Martin C, Putt J. Advanced pneumatic impulse ice protec- tion system (PUP) for aircraft[J]. Journal of Aircraft, 1992, 29(4): 714-716.
  • 10Gerardi J J, Ingrain R B. Electro-magnetic expulsion dei- cing system: United States, 6102a3a[P]. 2000-08-15.

二级参考文献26

  • 1李国知,胡利,张瑞民,曹义华.直升机旋翼桨叶翼型积冰的数值模拟[J].直升机技术,2008(3):78-81. 被引量:7
  • 2Clement Hochart, Guy Fortin, Jean Perron, et al. Wind turbine performance under icing conditions[J]. Wind Energy, 2008, 11(4): 319-333.
  • 3Jungyong Wang, Ayhan Akinturk, Stephen J Jones. Ice loads acting on a model Podded propeller blade[J]. Journal of Offshore Mechanics andArcticEngineering, 2007, 129(3): 236-245.
  • 4Palacios J L, Zhu Yun, Smith E C. Ultrasonic shear and lamb wave interface stress for helicopter rotor de-icing purposes[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Newport, RI, United States, 2006, 11: 8131-8142.
  • 5Venna S, Lin Y, Botura G. Piezoelectric transducer actuated leading edge de-icing with simultaneous shear and impulse forces[J]. Journal of Aircraft, 2007, 44(2): 509-515.
  • 6Auld B A. Acoustic fields and waves in solids[M]. 2nd Edition. Krieger Pub Co, 1990: 87-95.
  • 7Centolanza L R, Smith E C, Munsky B. Induced-shear piezo-electric actuators for rotor blade trailing edge flaps[J]. Smart Materials and Structures, 2002, 11(1): 24-35.
  • 8Zhu Yun, Palacios J L, Rose J L, et al. De-icing of multi-layer composite plates using ultrasonic guided waves[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Schaumburg, IL, United States, 2008.
  • 9Kandagal S B, Venkatraman K. Piezo-actuated vibratory deicing of a fiat plate[C]//46th AIAA/ASME/ASCE/AHS/AS C Structures, Structural Dynamics & Materials Conference, Austin, TX, United States, 2005: 3907-3914.
  • 10Magsoft Corporation. AT1LA finite-element code for piezoelectric and magnetostrictive transducer modeling vesion 5.03 user's manual[M]. MAGNASOPT Co., 1993: 50-179.

共引文献55

同被引文献40

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部