期刊文献+

对失控航天器在轨服务的自适应滑模控制器设计 被引量:3

Adaptive sliding mode controller design for on-orbit servicing to uncontrollable spacecraft
原文传递
导出
摘要 为实现对自由翻滚的失控目标航天器进行在轨服务,基于二阶滑模控制算法设计了相对位置与姿态耦合的自适应控制器。考虑相对转动对相对平动的耦合作用,建立了两航天器对接端口间相对位置与姿态耦合的动力学模型,并在此基础上设计了自适应Super twisting控制器,以减弱已知界限的有界干扰所产生的震颤效应,使闭环系统在有限时间内收敛到平衡点。利用李雅普诺夫方法证明了有界干扰下的闭环系统稳定性,并对收敛时间的上界进行了估计。仿真结果表明,与Super twisting算法相比,所设计的自适应二阶滑模控制器对参数不确定性及线性增长有界干扰具有较强的鲁棒性,且控制精度满足在轨服务的任务需求。 A relative position and attitude coupled adaptive controller is designed on the basis of second-order sliding mode control algorithm. It is proposed for on-orbit servicing on the free tumbling uncontrollable target spacecraft. Considering the coupled effect of relative rotation on relative translation, a relative position and attitude coupled dynamic model is derived for two docking ports on different spacecraft. Based on this coupled relative motion model, an adaptive super twisting controller is proposed to attenuate the chattering phenomenon caused by bounded perturbation with known upper bound. It makes the closed-loop system converge to the equilibrium point in finite time. Under the condition of limited disturbances, the closed- loop system is proved to be steady by Lyapunov method and the supremum of convergence time is estimated. By comparison with the super twisting method, numerical simulations are performed to validate strong robustness of the designed adaptive second-order sliding mode controller for parameter uncertainty and linearly growing bounded disturbances. The control accu- racy is high enough for the requirement of on-orbit servicing mission.
出处 《航空学报》 EI CAS CSCD 北大核心 2015年第5期1639-1649,共11页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(61104026)~~
关键词 航天器在轨服务 滑模控制 自适应控制 相对平动 相对转动 有限时间收敛 鲁棒性 spacecraft on-orbit servicing sliding mode control adaptive control relative translation relative rotation finite time convergence robustness
  • 相关文献

参考文献17

  • 1Long A M, Richards M G, Hastings D E. On-orbit servi- cing., a new value proposition for satellite design and oper- ation [J]. Journal of Spacecraft and Rockets, 2007, 44(4) .. 964-976.
  • 2Komanduri A S, Bindel D, Da F M. Guidance and control strategies for a spacecraft to rendezvous with a non-coop- erative spaeeera{t[C]//I Proceeding of the 61st Internation- al Astronautical Congress. Paris, France: International Astronautical Federation, 2010: 5982-5991.
  • 3Segal S, Gurfil P. Effect of kinematic rotation-translation coupling on relative spacecraft translational dynamics[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(3) : 1045-1050.
  • 4Utkin V I, Poznyak A S. Adaptive sliding mode control with application to super-twist algorithm: equivalent con- trol method[J]. Automatica, 2013, 49(1): 39-47.
  • 5Shtessel Y, Taleh M, Plestan F. A novel adaptive-gain supertwisting sliding mode controller: methodology and application[J]. Automatica, 2012, 48(5).. 759-769.
  • 6Jia J, Yao Y, Ma K M. Continuous optimal terminal proximity guidance algorithm for autonomous rendezvous and docking[J]. Information Technology Journal, 2013, 12(5) : 1011-1017.
  • 7Gao X Y, Teo K L, Duan G R. An optimal control approach to robust control of nonlinear spacecraft rendez- vous system with 0-D technique[J]. International Journal of Innovative Computing, Information and Control, 2013, 9(5): 2099-2110.
  • 8Utkin V. About second order sliding mode control, rela- tive degree, finite time convergence and disturbance rejec- tion[C]//Proceeding of 2010 llth International Workshop on Variable Structure Systems. Piscataway, NJ: IEEE Press, 2010: 528-533.
  • 9Wilfrid P, Jean P B. Sliding mode control in engineering [M]. New York: Marcel Dekker, 2002.. 51-99.
  • 10Gonzalez T, Moreno J A, Fridman L. Variable gain super-twisting sliding mode control[J]. IEEE Transac- tions on Automatic Control, 2012, 57(8) : 2100-2105.

二级参考文献20

  • 1Meirovitch L, Chen Y. Trajectory and control optimiza- tion for flexible space robots[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(3): 493- 502.
  • 2Seweryn K, Banaszkiewicz M. Optimization of the trajectory of a general free-flying manipulator during the rendezvous maneuver[R]. AIAA-2008-7273, 2008.
  • 3Hablani H B. Autonomous inertial relative navigation with sight-line-stabilized integrated sensors for spacecraft rendezvous[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(1): 172 -183.
  • 4Shibata M, Ichikawa A. Orbital rendezvous and flyaround based on null controllability with vanishing energy [J]. Journal of Guidance, Control, and Dynamics, 2007, 30 (4) : 934-945.
  • 5Sebastian G. Modeling the coupled translational and rotational relative dynamics for formation flying control[R]. AIAA-2005-6091 , 2005.
  • 6Pan H, Kapila V. Adaptive nonlinear control for space craft formation flying with coupled translational and atti tude dynamics[C]//Proceedings of the 40th IEEE Conference on Decision and Control. 2001, 3. 2057- 2062.
  • 7Pan H, Wong H, Kapila V. Output feedback control for spacecraft with coupled translation and attitude dynamics [C] // Proceedings of the 43rd IEEE Conference on Decision and Control. 2004, 4: 4453-4458.
  • 8Wong H, Pan H, Kapila V. Output feedback control for spacecraft formation flying with coupled translation and attitude dynamics[C]//Proeeedings of the 2005 American Control Conference. 2005, 4:2419- 2426.
  • 9Subbarao K, Welsh S. Nonlinear control of motion synchronization for satellite proximity operations[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5) : 1284- 1294.
  • 10Bando M, Ichikawa A. Periodic orbits of nonlinear relative dynamics and satellite formation[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4): 1200-1208.

共引文献20

同被引文献22

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部