期刊文献+

基于特征区分度的静脉图像质量评价算法

Vein Image Quality Assessment Algorithm Based on Feature Discrimination
下载PDF
导出
摘要 针对目前采集静脉图像的质量评价标准主要依赖主观判断的缺陷,提出了一种基于特征区分度的静脉图像质量评价算法。该算法首先基于近红外静脉图像的特点建立了质量评价模型,而后依据训练样本特征的区分度确定质量评价模型参数,最后基于该模型优化采集到的静脉图像能够提取出优质的静脉特征。实验结果表明,基于该方法获取的特征具有较好的类间区分性,进而提高识别效果。 For the defects that vein image quality assessment criterion was mainly relied on subjective judgment currently, a vein image quality assessment algorithm based on feature discrimination was proposed. Firstly, a quality assessment model was proposed based on vein image features, then model parameters were fixed according to the discrimination of training samples feature, and finally high quality features of acquired vein images can be extracted based on model optimization. Experiments show that the extracted features have good dispersion in different classes, and the recognition effect is improved.
出处 《辽宁工业大学学报(自然科学版)》 2015年第2期71-74,78,共5页 Journal of Liaoning University of Technology(Natural Science Edition)
基金 国家自然科学基金项目(61272214) 辽宁省教育厅一般项目(L2013241)
关键词 静脉识别 质量评价 特征区分度 特征提取 vein recognition quality assessment feature discrimination feature extraction
  • 相关文献

参考文献13

  • 1Cross J M, Smith C L. Thermographic imaging of subcutaneous vascular network of the back of the hand for biometric identification[C]. Proceedings of IEEE 29th International Carnahan Conference on Security Technology, England, 1995: 20-35.
  • 2Lin C L, Fan K C. Biometric verification using thermal images of palm-dorsa vein patterns. Transactions on Circuits and Systems for Video Technology[J]. 2004, 14(2):199-213.
  • 3Crisan C, Tamovan L G, Crisan T E. A low cost vein detection system using near infrared radiation[C]. 2007 IEEE Sensors Applications Symposium, SAS, San Diego, CA, United states, 2007: 51-56.
  • 4Wang L; Leedham G, Cho S Y. Infrared imaging of hand vein patterns for biomctric purposes[J], lET Computer Vision, 2007, 1(3-4): 113-122.
  • 5Zhao S, Wang Y D, Wang Y H. Biometric identification based on low-quality hand vein pattern images[C]. Proceedings of the 7th International Conference on Machine Learning and Cybernetics, ICMLC, Kunming, China, 2008:1172-1177.
  • 6袁雪,宋永端,魏学业.Parallel sub-neural network system for hand vein pattern recognition[J].Chinese Optics Letters,2011,9(5):30-33. 被引量:1
  • 7Cui J J, Wang L H, Sun L, et al. A method of near-infrared image acquisition based on image quality assessment[C]. 8th International Conference on Measurement and Control of Granular Materials, Shenvang, Ch/na, 2009:509-5 I2.
  • 8崔建江,王立辉,陈大力,潘峰.基于近红外图像质量评价的静脉图像采集系统[J].东北大学学报(自然科学版),2009,30(8):1099-1102. 被引量:10
  • 9Zhao Y. Acquisition and preprocessing of hand vein image. 2011 International Conference on Multimedia Technology [C]. Hangzhou, China, 2011:5727-5729.
  • 10Jia X, Cui J J, Xue D Y. Near Infrared Vein Image Acquisition System Based on Image . Quality Assessment[C]. The International Conference on Electronics, Communications andControl,Ningbo, China, 2011: 922-925.

二级参考文献27

  • 1Hashimoto J. Finger vein authentication technology and its future[C]//2006 Symposium on VLSI Circuits. Kawasaki, 2006 ; 5 - 8.
  • 2Wang J G, Yau W Y, Suwandy A, et al. Person recognition by fusing palm print and palm vein images based on "Laplacian palm" representation[J ]. Pattern Recognition, 2008,41(5) : 1514 - 1527.
  • 3Crisan S, Tamovan I G, Crisan T E. A low cost vein detection system using near infrared radiation [ C]//IEEE Sensors Applications Symposium. San Diego: IEEE, 2007: 51-56.
  • 4Wang L Y, Leedham C G. A thermal hand vein pattern verification system[J].Lecture Notes in Computer Science, 2005,3687 : 58 - 65.
  • 5Dai Y G, Huang B N, Li W X, et al. A method for capturing the finger-vein image using nonuniform intensity infrared light [ C]//1st International Congress on Image and Signal Processing. Tianjin: Tianjin University of Technology, 2008:501 - 505.
  • 6Zhao H, Li Q, Feng H J, et al. Experimental research on distribution of LEDs light intensity [C]//6th International Symposium on Test and Measurement. Beijing: Chinese Society for Modem Technical Equipment (CSMTE), 2005: 910-913.
  • 7Cross J M, Smith C L. Thermographic imaging of the subcutaneous vascular network of the back of the hand for biometric identification [C]// IEEE 29th International Carnahan Conference on Security Technology. Sanderstead, IEEE, 1995:20- 35.
  • 8Barmi M, Bartolini F, De Rosa A, et al. Capacity of full frame DCT image watermarks[ J ]. IEEE Transactions on Image Processing, 2000,9 (8) : 1450 - 1455.
  • 9Damera-Venkata N, Kite T D, Geisler W S, et al. Image quality assessment based on a degradation model[J].IEEE Transactions on Image Processing, 2000,9(4) :636 650.
  • 10A. Kumar and K. V. Prathyusha, IEEE Trans. Image Processing 18, 2127 (2009).

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部