期刊文献+

基于LMI的一类混沌系统同步控制及仿真

Synchronization Control and Simulation for a Type of Chaotic System Based on LMI Technique
下载PDF
导出
摘要 针对一类混沌系统,进行了基于线性矩阵不等式(LMI)的同步控制器的设计,使混沌系统的各个状态均能较快地达到同步状态.该方法只需求解矩阵K,运算量非常小,满足了工业中实时性的要求,具有一定的有效性和可行性. For a type of chaotic system, synchronous controller is designed based on linear matrix inequality (LMI), and can make each state of chaotic systems to reach synchronization status quickly. With this method, only matrix K needs to be solved, so computation amount is very small, and can meet the requirements of real-time property in industry, and has some feasibility and validity.
出处 《重庆三峡学院学报》 2015年第3期53-55,59,共4页 Journal of Chongqing Three Gorges University
基金 重庆市教委科学技术研究项目(KJ131108) 重庆三峡学院科学研究项目资助(14QN30)阶段性成果
关键词 混沌系统 同步控制器 LMI chaotic systems synchronous controller LMI
  • 相关文献

参考文献4

二级参考文献40

  • 1Pecora L M,Carroll T L.Synchronization in Chaotic Systems[J].Physical Review Letters,1990,64(8): 821-824.
  • 2Park J H.Synchronization of Genesio Chaotic System via Back- stepping Approach[J].Chaos Solitons Fractals,2006,27(5): 1369- 1375.
  • 3Yan Junjun,Yang Yi-Sung,Chiang Tsung-Ying,et al.Robust Synchronization of Unified Chaotic Systems via Sliding Mode Control[J].Chaos,Solitons and Fractals,2007,34(3): 947-954.
  • 4Wang Xingyuan,Song Junmei.Synchronization of the Unified Chaotic System[J].Nonlinear Analysis-theory Methods & Appli- cations,2008,69(10): 3409-3416.
  • 5Yan Jianping,Li Changpin.Generalized Projective Synchroni- zation of a Unified Chaotic System[J].Chaos,Solitons and Fractals,2005,26(4): 1119-1124.
  • 6Mohamed Z,Nejib S,Haitham S.Synchronization of the Unified Chaotic Systems Using a Sliding Mode Controller[J].Chaos,Solitons and Fractals,2009,42(5): 3197-3209.
  • 7Shu Yonglu, Xu Hongxing, Zhao Yunhong. Estimating the Ulti- mate Bound and Positively Invariant Set for a New ChaoticSystem and Its Application in Chaos Synchronization[J]. Chaos, Solitons & Fractals, 2009, 42(5): 2852-2857.
  • 8Lu Jinhu, Chen Guanrong. A New Chaotic Attractor Coined[J]. International Joumal of Bifurcation and Chaos, 2002, 12(3): 659-661.
  • 9Agiza H Z. Chaos Synchronization of Lu Dynamical System[J]. Nonlinear Analysis: Theory, Methods & Applications, 2004, 58(1/2): 11-20.
  • 10Li Dequan. TS Fuzzy Realization of Chaotic Lu System[J]. Physics Letters A, 2006, 356(1): 51-58.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部