摘要
考虑对流扩散方程:Nbui(u)t=div(ρα|▽u| p-2▽u)+∑Ni=bi(u)/xi,(x,t)∈QT=Ω×(0,T)其中对流项∑Ni=bi(u)/xi满足bi(s)≤c|s|1+β,b′i(s)≤c|s|β.利用抛物正则化方法讨论该对流方程初边值问题解的定义,并在(p-2)/2>α>1下证明该问题存在唯一的弱解.
The diffusion convection equation with boundary degeneracy Nbui(u)t=div(ρα|▽u| p-2▽u)+∑Ni=bi(u)/xi,(x,t)∈QT=Ω×(0,T)was researched by the parabolic regularization method,where the convective term ∑Ni=bi(u)/xi satisfies bi(s)≤c|s|1+β,b′i(s)≤c|s|β.We also studied how to quote the initial boundary value problem,and proved the existence and the uniqueness of the solutions under some additional conditions such as(p-2)/2〉α〉1.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2015年第3期353-358,共6页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11371297
11271153)
高等学校博士学科点专项科研基金(批准号:20140101-20161231)
关键词
弱解
Fichera函数
边界退化
初边值问题
weak solution
Fichera function
boundary degeneracy
initial boundary value problem