期刊文献+

边界退化的对流扩散方程 被引量:11

Diffusion Convection Equation with Boundary Degeneracy
下载PDF
导出
摘要 考虑对流扩散方程:Nbui(u)t=div(ρα|▽u| p-2▽u)+∑Ni=bi(u)/xi,(x,t)∈QT=Ω×(0,T)其中对流项∑Ni=bi(u)/xi满足bi(s)≤c|s|1+β,b′i(s)≤c|s|β.利用抛物正则化方法讨论该对流方程初边值问题解的定义,并在(p-2)/2>α>1下证明该问题存在唯一的弱解. The diffusion convection equation with boundary degeneracy Nbui(u)t=div(ρα|▽u| p-2▽u)+∑Ni=bi(u)/xi,(x,t)∈QT=Ω×(0,T)was researched by the parabolic regularization method,where the convective term ∑Ni=bi(u)/xi satisfies bi(s)≤c|s|1+β,b′i(s)≤c|s|β.We also studied how to quote the initial boundary value problem,and proved the existence and the uniqueness of the solutions under some additional conditions such as(p-2)/2〉α〉1.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2015年第3期353-358,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11371297 11271153) 高等学校博士学科点专项科研基金(批准号:20140101-20161231)
关键词 弱解 Fichera函数 边界退化 初边值问题 weak solution Fichera function boundary degeneracy initial boundary value problem
  • 相关文献

参考文献4

二级参考文献22

  • 1柯媛元,黄锐,王春朋.具非线性源和非局部边值条件的一维p-Laplace方程非负非平凡解的存在性[J].吉林大学学报(理学版),2004,42(3):359-360. 被引量:1
  • 2赵俊宁.SINGULAR SOLUTIONS FOR A CONVECTION DIFFUSION EQUATION WITH ABSORPTION[J].Acta Mathematica Scientia,1995,15(4):431-441. 被引量:2
  • 3赵俊宁,袁洪君.一类非线性双重退缩抛物方程的Cauchy问题[J].数学年刊(A辑),1995,1(2):181-196. 被引量:6
  • 4[1]Kalashnikov, A. S., Some problems of the qualitative theory of nonlinear degenerate second order parabolic equations, Russian Math. Surveys, 42:2(1987), 169 222.
  • 5[2]DiBenedetto, E., Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.
  • 6[3]Bouguima, S. M. & Lakmeche, A., Multiple solutions of a nonlinear problem involving the p-Laplacian,Comm. Appl. Nonlinear Anal., 7:3(2000), 83-96.
  • 7[4]Nabana, E., Uniqueness for positive solutions of p-Laplacian problem in an annulus, Ann. Fac. Sci.Toulouse Math., 8:l(1999), 143-154.
  • 8[5]Reichel, W. & Walter, W., Radial solutions of equations and inequalities involving the p-Laplacian, J.Inequal. Appl., 1:1(1997), 47-71.
  • 9[6]Dambrosio, W., Multiple solutions of weakly-coupled systems with p-Laplacian operators, Results Math., 36:1-2(1999), 34-54.
  • 10[7]Ko, Y., C1,α regularity of interfaces for solutions of the parabolic p-Laplacian equation, Comm. Partial Differential Equations, 24:5-6(1999), 915 950.

共引文献23

同被引文献47

引证文献11

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部