期刊文献+

一类改进Boussinesq方程的Lie对称群及群不变解

Lie Symmetry Analysis and Group-Invariant Solutions for an Improved Boussinesq Equation
下载PDF
导出
摘要 利用经典Lie群方法研究一类改进Boussinesq方程的Lie对称群的存在性及相应的群不变解,证明了改进Boussinesq方程存在3-参数的Lie对称群,并得到了该方程的一些行波解和非行波解. Applying the classical Lie symmetry method, we investigated the problem of determining the largest possible set of Lie point symmetries for an improved Boussinesq equation. The most general Lie point symmetry group of the improved Boussinesq equation was determined and the corresponding group-invariant solutions, such as travelling wave solutions were obtained.
作者 张锦 王乡月
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2015年第3期359-362,共4页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:J1310022 11001102)
关键词 LIE群 LIE对称 BOUSSINESQ方程 群不变解 Lie group Lie symmetry Boussinesq equation group-invariant solution
  • 相关文献

参考文献11

  • 1Boussinesq J. Theorie des Ondes et des Remous Qui se Propagent le Long D.un Canal Rectangulaire Horizontal enCommuniquant au Liquide Contenu Dans ce Canal des Vitesses Sensiblement Pareilles de la Surface au Fond [J].J Math Pures Appl, 1872, 17(2): 55-108.
  • 2Bogolubsky I L. Some Examples of Inelastic Soliton Interaction [J]. Comput Phys Comm, 1977,13(3) : 149-155.
  • 3Olver P J. Applications of Lie Groups to Differential Equations [M]. New York: Springer-Verlag,1993.
  • 4Barannik L F, Lahno H O. Symmetry Reduction of the Boussinesq Equation to Ordinary Differential Equations[J]. Rep Math Phys,1996 , 38(1) : 1-9.
  • 5Clarkson P A. Nonclassical Symmetry Reductions of the Boussinesq Equation [J]. Chaos Solitons Fractals, 1995,5(12): 2261-2301.
  • 6Levi D,Winternitz P. Non-classical Symmetry Reduction; Example of the Boussinesq Equation [J], J Phys A:Math Gen, 1989, 22(15): 2915-2924.
  • 7Clarkson P A,Ludlow D K. Symmetry Reductions,Exact Solutions. and Painleve Analysis for a GeneralisedBoussinesq Equation [J]. J Math Anal Appl,1994,186(1) : 132-155.
  • 8Gandarias M L,Bruzon M S. Classical and Nonclassical Symmetries of a Generalized Boussinesq Equation [J].J Nonlinear Math Phys, 1998,5(1) : 8-12.
  • 9Bruzon M S,Gandarias M L. Symmetries for a Family of Boussinesq Equations with Nonlinear Dispersion [J].Commun Nonlinear Sci Numer Simul, 2009 , 14(8) : 3250-3257.
  • 10Moleleki L D, Khalique C M. Symmetries, Traveling Wave Solutions, and Conservation Laws of a (3 + 1)-Dimensional Boussinesq Equation [J]. Adv Math Phys, 2014, 2014 : 672-679.

二级参考文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部