期刊文献+

具有临界非线性项的p-双调和方程无穷多小解的存在性

Existence of Infinitely Many Small Solutions for p-Biharmonic Equation with Critical Nonlinearity
下载PDF
导出
摘要 利用一个新的对称山路引理研究一类具有临界非线性项的p-双调和方程,得到了该问题无穷多个非平凡解的存在性,并证明了这些解序列趋近于零. A class of p-biharmonic equations with critical nonlinearity to obtain infinitely many solutions by means of a version of the symmetric mountain pass theorem. Finally, we showed that this sequence of solutions converge to zero.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2015年第3期367-371,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11301038) 吉林省科技厅青年基金(批准号:20130522100JH) 吉林省教育厅“十二五”科学技术研究项目(批准号:吉教科合字[2013]第252号) 吉林大学符号计算与知识工程教育部重点实验室开放课题基金(批准号:93K172013K03)
关键词 p-双调和方程 对称山路引理 无穷多解 p-biharmonic equation symmetric mountain pass theorem infinitely many solutions
  • 相关文献

参考文献14

  • 1Brezis H, Nirenberg L. Positive Solutions of Nonlinear Elliptic Equations Involving Critical Exponents [J],Commun Pure Appl Math, 1983,36(4) : 437-477.
  • 2LI Shujie, ZOU Wenming. Remarks on a Class of Elliptic Problems with Critical Exponents [J]. Nonlinear Anal,1998, 32(6): 769-774.
  • 3CHEN Jianqing, LI Shujie. On Multiple Solutions of a Singular Quasilinear Equation on Unbounded Domain [J].J Math Anal Appl, 2002, 275(2) : 733-746.
  • 4HE Xiaoming, ZOU Wenming. Infinitely Many Arbitrarily Small Solutions for Sigular Elliptic Problems withCritical Sobolev-Hardy Exponents [J]. Proc Edinb Math Soc,2009. 52(1) : 97-108.
  • 5Silva E A B,Xavier M S. Multiplicity of Solutions for Quasilinear Elliptic Problems Involving Critical SobolevExponents [J]. Ann Inst H Poincare Anal Non Lineaire, 2003,20(2) : 341-358.
  • 6Ghoussoub N,Yuan C. Multiple Solutions for Quasi-linear PDEs Involving the Critical Sobolev and HardyExponents [J]. Trans Amer Math Soc, 2000,352 : 5703-5743.
  • 7Chabrowski J. On Multiple Solutions for the Nonhomogeneous /)-Laplacian with a Critical Sobolev Exponent [J],Differ Integ Equ, 1995,8(4) : 705-716.
  • 8Candito P, Li L,Livrea R. Infinitely Many Solutions for a Perturbed Nonlinear Navier Boundary Value ProblemInvolving the /J-Biharmonic [J]. Nonlinear Anal,2012,75(17): 6360-6369.
  • 9LI Chun, TANG Chunlei. Three Solutions for a Navier Boundary Value Problem Involving the />-Biharmonic [J].Nonlinear Anal, 2010 , 72(3/4) : 1339-1347.
  • 10WANG Weihua,ZHAO Peihao. Nonuniformly Nonlinear Elliptic Equations of ^-Biharmonic Type [J]. J MathAnal Appl, 2008,348(2) : 730-738.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部