期刊文献+

一类有序分数阶q-差分方程解的存在性 被引量:7

Existence of Solutions for a Class of Sequential Fractional q-Differences Equation
下载PDF
导出
摘要 考虑一类有序分数阶q-差分方程解的存在性和唯一性.先利用q-指数给出该方程解的表达式,再分别利用Banach压缩映像原理、Krasnoselskii不动点定理、Leray-Schauder选择定理证明该方程解的存在性和唯一性. We studied the existence and uniqueness of solutions for a class of the sequential fractional q-differences equation. Firstly, a representation for the solution to this equation was given via q-exponential. Then the existence and uniqueness of solutions were proven by means of Banach fixed point theorem, Krasnoselskii fixed point theorem and Leray-Schauder alternative theorem.
作者 葛琦 侯成敏
机构地区 延边大学理学院
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2015年第3期377-382,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11161049) 吉林省教育厅"十二五"科学技术研究项目
关键词 有序分数阶q-差分 不动点定理 解的存在性 sequential fractional q-difference fixed point theorem existence of solutions
  • 相关文献

参考文献11

  • 1Page D N. Information in Black Hole Radiation [J], Phys Rev Lett, 1993,71(23) : 3743-3746.
  • 2Youm D. g-Deformed Conformal Quantum Mechanics [J]. Phys Rev D,2000,62(9) : 095009.
  • 3Jackson F H. q-Difference Equations [J]. Amer J Math, 1910,32(4) : 305-314.
  • 4Ferreira RAC. Nontrivial Solutions for Fractional g-Difference Boundary Value Problems [J]. Electron J QualTheory Differ Equ,2010(70) : 1-10.
  • 5Ferreira RAC. Positive Solutions for a Class of Boundary Value Problems with Fractional (y-Differences [J].Comput Math Appl, 2011,61(2): 367-373.
  • 6ZHAO Yulin, CHEN Haibo, ZHANG Qiming. Existence Results for Fractional ^-Difference Equations withNonlocal g-Integral Boundary Conditions [J/OL]. Advances in Difference Equations,2013,doi: 10. 1186/1687-1847-2013-48.
  • 7ZHAO Yulin, YE Guobing, CHEN Haibo. Multiple Positive Solutions of a Singular Semipositione IntegralBoundary Value Problem for Fractional ^-Derivatives Equation [J/OL]. Abstract and Applied Analysis,2013.http://dx. doi. org/10. 1155/2013/643571.
  • 8孙明哲,韩筱爽.一类分数阶q-差分边值问题的正解[J].延边大学学报(自然科学版),2013,39(4):252-255. 被引量:9
  • 9Almeida R,Martins N. Existence Results for Fractional .-Difference Equations of Order aG [2,3] with Three-Point Boundary Conditions [J]. Commun Nonlinear Sci Numer Simul,2014,19(6) : 1675-1685.
  • 10Cieslinski J L. Improved q-Exponential and q-Trigonometric Functions [J]. Appl Math Lett, 2011, 24(12);2110-2114.

二级参考文献10

  • 1Strominger A. Information in black hole radiationQj. Phys Rev Lett,1993 : 3743-3746.
  • 2Youm D. ^-deformed conformal quantum mechanics[J], Phys Rev D, 2000,62(9) :095009.
  • 3Jackson F H. ^-difference equations Amer[J], J Math, 1910,32(4) :305-314.'.
  • 4Jackson F H. On ^-definite integrals, Quart[J], J Pure Appl Math, 1910,41 : 193-203.
  • 5Al-Salam W A. Some fractional g-integrals and g-derivatives[J]. Proc Edinb Math Soc,1966,15(2) * 135-140.
  • 6Agarwal R P. Certain fractional g-integrals and g,-derivatives[J]. Proc Cambridge Philos Soc, 1969,66 : 365-370.
  • 7Atici F M,Eloe P W. Fractional g-calculus on a time scale[J]. J Nonlinear Math Phys, 2007.14(3) :333-344.
  • 8Rajkovic P M,Marinkovic S D,Stankovic M S. Fractional integrals and derivatives in g-calculusCJ]. DiscreteMath, 2007,1(1):311-323.
  • 9Ferreira R A C. Nontrivial solutions for fractional q-difference boundary value problems[J]. Theory Differ Equ, 2010,70:1-10.
  • 10Ferreira RAC. Positive solutions for a class of boundary value problems with fractional g-differences[J]. Com-puters and Mathematics with Applications, 2011,61-367-373.

共引文献8

同被引文献11

引证文献7

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部