期刊文献+

基于势概率假设密度平滑器的多目标跟踪算法 被引量:2

Multi-target tracking algorithm based on cardinalized probability hypothesis density smoother
下载PDF
导出
摘要 针对概率假设密度(PHD)滤波在杂波环境下对机动多目标进行检测与跟踪时,易出现高阶势分布信息丢失,从而导致目标检测出现偏差的问题,提出一种将势概率假设密度(CPHD)滤波与平滑算法相结合的多目标跟踪算法。从CPHD的预测与更新步骤出发,结合后向平滑递归公式,推导CPHD平滑公式,并提出基于高斯混合实现的GM-CPHD平滑器。仿真实验表明,GM-CPHD平滑器的检测与跟踪性能优于未经平滑处理的CPHD滤波器。 When multiple maneuvering targets are estimated and tracked with probability hypothesis density(PHD)filter in clutter,it is easy to lose higher order cardinality information which will result in the estimation deviation of multi-target.A multi-target tracking algorithm combined cardinalized probability hypothesis density (CPHD)filter with the smoothing algo-rithm is proposed.The formula of CPHD smoothing is deduced reasonably according to the prediction,update steps of CPHD and combined with the backward smoothing recursion formula.In addition,the CPHD smoother based on Gaussian mixture is also proposed.Simulation results show that the proposed solution is better than the CPHD filter without smoot-hing.
出处 《桂林电子科技大学学报》 2015年第2期121-126,共6页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(61261033 41201479 61062003 61162007) 广西自然科学基金(2013GXNSFBA019270) 桂林电子科技大学研究生教育创新计划(GDYCSZ201431)
关键词 概率假设密度 势概率假设密度 高斯混合 平滑器 probability hypothesis density cardinalized probability hypothesis density Gaussian mixture smoother
  • 相关文献

参考文献14

  • 1Mahler R. Multi-target Bayes filtering via first-order multi-target moments[J]. IEEE Transactions on Aero- space Electronic Systems,2003,39(4)..1152-1178.
  • 2Vo B N ,Singh S,Doucet A. Sequential Monte Carlo im- plementation of the PHD filter for multi-target racking [C]//Proceedings of the International Conference on In- formation Fusion, Cairns : ISIF, 2003 : 792-799.
  • 3Vo I3 N,Singh S, Doucet A. Sequential Monte Carlo methods for multi-target filtering with random finite sets[J]. IEEE Transactions on Aerospace Electronic Systems, 2005,41 (4) : 1224-1245.
  • 4Vo B N,Ma W. The Gaussian mixture probability hy- pothesis density filter[J]. IEEE Transactions on Signal Processing, 2006,54 ( 11 ) : 4091-4104.
  • 5Mahler R. A theoryof PHD filters of higher order in tar- number [J]. Signal Processing, Sensor Fusion, and get Target Recognition XV,SHE Defense Security Sym-posium ,2006 : 6235 (K) : 1-12.
  • 6Mahler R. PHD filters of higher order in target number [J]. IEEE Transactions on Aerospace Electronic Sys- tems,2007,43 (3) : 1523-1543.
  • 7Erdinc O, Willett P, Bar-Shalom Y. A physical-space ap- proach for the PHD and CPHD filters[J]. Signal Pro- cessing, Sensor Fusion, and Target Recognition XV, SPIE Defense & Security Symposium, 2006,6236 (19) .. 1-11.
  • 8Vo B T,Vo B N,Cantoni A. Analytic implementations of probability hypothesis density filters[J]. IEEE Trans- actions on Signal Processing,2007:3553-3567.
  • 9Nandakumaran N,Punithakumar K, Kirubarajan T. Im- proved multi-target tracking using probability hypothe- sis density smoothing[J]. Proceedings of the SPIE Con- ference on Signal and Processing of Small Targets, 2007,6699[M]: 1-8.
  • 10Nandakumaran N,Tharmarasa R, Lang T,et al. Gauss- ian mixture probability hypottiesis density smoothing with multistatic sonar [J]. Proceedings of the SPIE Conference on Signal Processing, Sensor Fusion and Target Recognition, 2008,6968(7) : 1-8.

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部