期刊文献+

线性互补问题的数值分析 被引量:16

Numerical Analysis on Linear Complementarity Problems
下载PDF
导出
摘要 综述了线性互补问题理论的最新发展和已有成果,包括线性互补问题的数值解法,特别是模基矩阵分析算法、误差分析以及扰动分析.给出了线性互补问题的数学问题形式、数学模型以及相关概念;介绍了求解线性互补问题的各种数值解法,其中重点关注迭代法特别是近年来比较热门的模基矩阵分裂迭代法,基于模方程通过运用非光滑Newton法的思想,给出了模基非光滑Newton法,新算法比已有的模基矩阵分裂迭代法收敛更快;给出了线性互补问题解的误差分析,介绍了已有的几个误差界结果,包括运用预处理技术得到的更好的新误差界.同时介绍了线性互补问题解扰动分析的结果及目前最新的扰动界. The latest progress in the study on LCPs are rithms for solving LCPs such as the modules-based matrix summarized. In particularly, some new numerical algosplitting methods are introduced. Some new results in the error analysis and perturbation analysis are summarized. At first, the linear complementarity problem is presented with its mathematical models and some notations. Secondly, the numerical algorithms for solving the linear complementarity problem are given. The iteration methods especially the module-based matrix splitting iteration methods proposed these years are summarized. Based on module equations, by introducing the idea of nonsmooth Newton's method, the modules-based nonsmooth Newton's method is established, which converges faster than the existing module-based matrix splitting iteration methods. Then the error analysis of the solution of the linear complementarity problem is given with the new error bounds based on preconditioned technique, which is better than the error bounds given before. The results of the perturbation analysis of the solution of the linear complementarity problem are shown with the latest perturbation bounds.
作者 黎稳 郑华
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2015年第3期1-9,共9页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11271144) 广东省高校创新基金项目(2013KJCX0053)
关键词 线性互补问题 模基方法 误差分析 扰动分析 linear complementarity problem modules-based method error analysis perturbation analysis
  • 相关文献

参考文献42

  • 1Cottle R W, Pang J S,Stone R E. The linear complemen-tarity problem [ M ]. SanDiego : Academic, 1992.
  • 2Murty K G. Linear complementarity, linear and nonlinearprogramming[ M ]. Berlin : Heldermann Verlag, 1988.
  • 3Berman A, Plemmons R J. Nonnegative matrix in themathematical sciences [ M ]. Philadelphia : SIAM Publish-er, 1994.
  • 4Bai Z Z. On the convergence of the multisplitting methodsfor the linear complementarity problem [ J ]. SIAM Journalon Matrix Analysis and Applications, 1999,21 ( 1) : 67-78.
  • 5Frommer A,Szyld D B. H-splittings and two-stage itera-tive methods [ J ]. Numerische Mathematik, 1992, 63(1); 345 -356.
  • 6Zhang L L, Ren Z R. Improved convergence theorems ofmodulus-based matrix splitting iteration methods for linearcomplementarity problems [ J ]. Applied MathematicicsLetters, 2013,26: 638 - 642.
  • 7Li H B, Huang T Z,Li H. On some subclasses of P-ma-trices[ J ]. Numerical Linear Algebra with Applications,2007,14(5) :391 -405.
  • 8Van Bokhoven W M G. Piecewise-linear modelling and a-nalysis[ M]. Eindhoven : Proefschrift, 1981.
  • 9Bai Z Z. Modulus-based matrix splitting iteration methodsfor linear complementarity problems[ J]. Numerical Line-ar Algebra with Applications, 2010, 17:917 - 933.
  • 10Goldstein A A. Convex programming in Hilbert space[J ]. Bulletin of the American Mathematical Society,1964, 70: 709 -710.

二级参考文献58

  • 1Bai Z Z. A class of two-stage iterative methods for systems of weakly nonlinear equations[J]. Numer. Algorithms, 1997, 14: 295-319.
  • 2Bai Z Z. Parallel multisplitting two-stage iterative methods for large sparse systems of weakly nonlinear equations[J]. Numer. Algorithms, 1997, 15: 347-372.
  • 3Bai Z Z. On the convergence of the multisplitting methods for the linear complementarity prob- lem[J]. SIAM J. Matrix Anal. Appl., 1999, 21:67 78.
  • 4Bai Z Z. Convergence analysis of the two-stage multisplitting method[J]. Calcolo, 1999, 36:63 -74.
  • 5Bai Z Z. Modulus-based matrix splitting iteration methods for linear complementarity problem- s[J]. Numer. Linear Algebra Appl., 2010, 17: 917-933.
  • 6Bai Z Z and Evans D J. Matrix multisplitting relaxation methods for linear complementarity problems[J]. Int. J. Comput. Math., 1997, 63: 309-326.
  • 7Bai Z Z and Evans D J. Matrix multisplitting methods with applications to linear complemen- tarity problems: parallel synchronous and chaotic methods[J]. Rseaux et Systmes R6partis: Calculateurs Parallel~s, 2001, 13: 125-154.
  • 8Bai Z Z, Sun J C and Wang D R. A unified framework for the construction of various matrix multisplitting iterative methods for large sparse system of linear equations[J]. Comput. Math. Appl., 1996, 32: 51-76.
  • 9Bai Z Z and Zhang L L. Modulus-based synchronous multisplitting iteration methods for linear complementarity problems[J]. Numer. Linear Algebra Appl., 2012, DOI: 10.1002/nla.1835.
  • 10Bai Z Z and Zhang L L. Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems[J]. Numer. Algorithms, 2012, DOI: 10.1007/sl1075-012- 9566-x.

共引文献23

同被引文献52

引证文献16

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部