期刊文献+

传播过程中信号缺失的层次聚类社区发现算法 被引量:3

Community detection algorithm based on hierarchical clustering under signal missing in propagating process
下载PDF
导出
摘要 社区发现是社会网络分析的一个基本任务,而社区结构探测是社区发现的一个关键问题。将社区结构中的结点看作信号源,针对信号传递过程中存在信号缺失情况,提出了一种层次聚类社区发现算法。该算法通过度中心性来度量节点接收信号的概率,用于量化节点接受信号过程中的缺失值。经过信号传递,使网络的拓扑结构转化为向量间的几何关系,在此基础上,使用层次聚类算法用于发现社区。为了验证SMHC算法的有效性,通过在三个数据集上与SHC算法、CNM算法、GN算法、Similar算法进行比较,实验结果表明,SMHC算法在一定程度上提高了社区发现的正确率。 Community identification is a basic task of social network analysis, meanwhile the community structure detec-tion is a key problem of community identification. Each node in the community structure is regarded as the signal source. A hierarchical clustering community algorithm is proposed in order to settle the problem of signal missing in the process of signal transmission. The algorithm measures the probability of receiving signals of nodes by degree centrality to quantify the signal missing values. After the signal transmission, the topology of the network is transformed into geometric relation-ships among the vectors. On the basis, the hierarchical clustering algorithm is used to find the community structure. In order to validate the proposed method, this paper compares it with SHC algorithm, CNM algorithm, GN algorithm and Similar algorithm. Under three real networks, the Zachary Club, American Football and Netscience, the experimental results indi-cate that SMHC algorithm can effectively improve precision.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第9期201-206,216,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61175067 No.61272095) 山西省科技攻关项目(No.20110321027-02) 山西省回国留学人员科研项目(No.2013-014)
关键词 社区发现 信号传播 信号缺失 度中心性 层次聚类 community identification signaling process signal missing degree centrality hierarchical clustering
  • 相关文献

参考文献15

二级参考文献211

  • 1杨楠,弓丹志,李忺,孟小峰.Web社区发现技术综述[J].计算机研究与发展,2005,42(3):439-447. 被引量:35
  • 2刘婷,胡宝清.基于聚类分析的复杂网络中的社团探测[J].复杂系统与复杂性科学,2007,4(1):28-35. 被引量:16
  • 3Adamic L A, Glance N. The political blogosphere and the 2004 US election: divided they blog. In: Proceedings of the 3rd International Workshop on the Weblogging Ecosystem, New York, USA: ACM, 2005. 36-43.
  • 4Jeong H, Mason S, Barabasi A L, Oltvai Z N. Lethality and centrality in protein networks. Nature, 2001, 411(6833): 41-42.
  • 5Ahn Y Y, Bagrow J P, Lehmann S. Link communities reveal multiscale complexity in networks. Nature, 2011, 466(7307): 761-764.
  • 6Gregory S. Fuzzy overlapping communities in networks. Journal of Statistical Mechanics: Theory and Experiment, 2011, 2:P02017.
  • 7Newman M E J. The structure and function of complex networks. SIAM Review, 2003, 45(2): 167-256.
  • 8Scheffer M. Complex systems: foreseeing tipping points. Nature, 2010, 467(7314): 411-412.
  • 9Newman M E J. Networks: an Introduction. New York: Oxford University Press. 2010.
  • 10Newman M E J. Scientific collaboration networks: I. network construction and fundamental results. Physical Review E, 2001, 64(1): 016131.

共引文献166

同被引文献23

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部