期刊文献+

基于特征分析的家庭网络流量识别与系统实现

Flow identification based on characteristic analysis and system realization in home networks
下载PDF
导出
摘要 数字家庭网络流量识别对保障数字家庭网络服务质量(Quality of Service,Qo S)具有重要作用。提出的Flow Level流量特征分析法结合Flow Level五元组分析和特征值分析,从五元组,上下行包数比,上下行平均包长及比值,上下行数据量比,源端地址数和端口数之比等方面研究视频点播、视频通话、下载和无线传屏等应用特征。其中,对P2P(Peer to Peer)视频点播和下载的识别方案做了进一步研究。最终满足了数字家庭网络流量识别的需求。在仿真实验阶段,测得家庭网络环境中主要应用占据带宽情况,分析并提取单位时间内应用流量特征值。最终基于Linux平台实现了多终端设备的多应用实时识别系统。 Flow identification plays an important role in guaranteeing the performance of quality of service for digital home networks. On the basis of characteristic analysis and flow level five tuple analysis, this paper proposes Flow Level characteristic approaches and studies the application features of Video On Demand(VOD), QQ video, download and multi-screens etc. from the perspective of five tuple, the ratio of total number of uplink packets to total number of downlink packets, uplink and downlink mean packet length and its ratio, the ratio of uplink total bytes to downlink total bytes, the ratio of the number of source addresses to the number of source ports. Furthermore the P2P VOD and P2P download iden-tification are further studied. This Flow Level characteristic analysis approaches are satisfied with the need of flow identi-fication for digital home network. In the experiment, the bandwidth occupation is measured, the features of the main appli-cations per unit time are analyzed and extracted in the home networks. The multi-application real-time identification system for the multi-devices on the Linux platform is realized.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第10期72-78,共7页 Computer Engineering and Applications
基金 高等学校博士学科点专项科研基金(No.20130131110029) 山东省自然科学基金(No.ZR2011FM027) 数字多媒体技术国家重点实验室开放基金(No.2013-2-3)
关键词 数字家庭网络 应用识别 FLOW Level流量特征分析法 流量实时识别系统 digital home networks application identification flow level characteristic approaches real-time flow identi-fication system
  • 相关文献

参考文献21

  • 1国家发改委等.关于下一代互联网“十二五”发展建设的意见[EB/OL].[2013-05-10].http://www.miit.gov.cn/n11293472/n11293832/n11294042/n12876231/14772106.html.
  • 2Auld T,Moore A W,Gull S F.Bayesian neural networks for Internet traffic classification[J].IEEE Transactions on Neural Networks, 2007,18 ( 1 ) : 223-239.
  • 3Callado A, Kamienski C, Szab6 G, et al.A survey on Intemet traffic identification[J].IEEE Communications Surveys & Tutorials, 2009, 11 (3) : 37-52.
  • 4Nguyen T T T,Armitage (LA survey of techniques for internet traffic classification using machine learning[J].IEEE Communications Surveys & Tutorials,2008,10(4) : 56-76.
  • 5Grajzer M, Koziuk M, Szczechowiak P, et al.A multi-clas- sification approach for the detection and identification of ehealth applications[C]//IEEE 2012 21st International Con- ference on Computer Communications and Networks.IEEE, 2012 : 1-6.
  • 6Moore A W, Papagiannaki K.Toward the accurate identi- fication of network applications[M].Springer Berlin Hei- delberg:Passive and Active Network Measurement,2005 : 41-54.
  • 7Dainotti A, Pescap6 A, Claffy K C.Issues and future direc- tions in traffic classification[J].IEEE Network, 2012,26 ( 1 ) : 35-40.
  • 8Cascarano N, Este A, Gringoli F, et al.An experimental evaluation of the computational cost of a DPI traffic clas- sifier[C]//IEEE Global Telecommunications Conference,2009 : 1-8.
  • 9Aceto G, Dainotti A, de Donato W, et al.PortLoad, taking the best of two worlds in traffic classification[C]//INFOCOM IEEE Conference on Computer Communications Workshops, 2010:1-5.
  • 10Erman J, Mahanti A,Arlitt M, et al.Offline/realtime traffic classification using semi-supervised learning[J].Performance Evaluation, 2007,64(9) ~ 1194-1213.

二级参考文献28

  • 1何飞.基于网络流量工程的CERNET主干网性能管理系统[D].北京:清华大学计算机科学与技术系,2001.
  • 2HE Tao, ZHANG Hui, LI Zhi-chun. A methodology for analyzing backbone network traffic at stream-level [ C ]//Proc of Communication Technology Proceedings. 2003:98-102,
  • 3FRALEIGH C, MOON S, LYLES B,et al. Packet-level traffic measurements from the sprint IP backbone [ J]. IEEE Trans on Networks, 2003,17(6) : 6-16.
  • 4BARAKAT C,THIRAN P,IANNACCONE G,et al. Modeling Internet backbone traffic at the flow level[ J]. IEEE Trans on Signal Processing Special Issue on Networking ,2003,51 ( 8 ) :2111- 2124.
  • 5MITCHELL T. Machine learning[ M ]. [ S. l. ] : McGraw Hill, 1997.
  • 6ANDRITSOS P. Data clustering techniques, Technical Report CSRG- 443 [ R]. 2002.
  • 7HAN J, KAMBER M. Data mining:concepts and techniques [ M ]. San Francisco : Academic Press ,2001.
  • 8NG R T, HAN J, BOCCA J, et al. Efficient and effective clustering method for spatial data mining[ C ]//Proc of Int Conf Very Large Data Bases. San Francisco : Morgan Kaufmann, 1994 : 144-155.
  • 9GUHA S, RASTOGI R, SHIM K. CURE : an efficient clustering algorithm for large databases [ C ]//Proc of ACM SIGMOD Conference. New York : ACM Press, 1998:73- 84.
  • 10GUHA S,RASTOGI R,SHIM K. ROCK:a robust clustering algorithm for categorical attributes[ C]//Proc of the 15th ICDE. [ S. l. ] :IEEE Computer Society, 1999:512- 521.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部