期刊文献+

时间序列的层次分段及相似性度量 被引量:3

Hierarchical segmentation and similarity measure of time series
下载PDF
导出
摘要 时间序列的相似性度量是时间序列数据挖掘的研究基础,为数据挖掘任务的效率和准确度提供可靠的保障。提出一种时间序列的层次分段及相似性度量方法,方法首先识别时间序列中的极值点,依据极值点的特征对时间序列进行分层次分段,并以此为基础,通过定义新的距离公式来度量时间序列间的相似性。使用新提出的相似性度量方法对时间序列进行聚类计算,实验结果表明,该方法能够有效地度量时间序列间的相似性,聚类效果明显,具有较好的实用性和良好的应用前景。 Time series similarity measure is the basis of time series data mining, which assure the data mining jobs’efficiency and accuracy. This article proposes a hierarchical segmentation and similarity measure method of time series. The method spots extreme points in time series firstly, segments the time series hierarchically based on extreme points feature, and defines new distance formula to measure the time series’similarity. Applying new similarity measure method in time series cluster calculation, the experimental result shows the method can measure the time series similarity effectively and have evident cluster efficiency. The new similarity method is equipped with favorable practicability and well application prospect.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第10期147-151,共5页 Computer Engineering and Applications
基金 中央高校基本科研业务费专项资金资助(No.JUSRP211A41)
关键词 时间序列 极值点 分层次分段 相似性度量 time series extreme points hierarchical segmentation similarity measure
  • 相关文献

参考文献17

  • 1Fu Tak-chung.A review on time series data mining[J]. Engineering Application of Artificial Intelligence, 2012, 24( 1 ) : 164-181.
  • 2刘懿,鲍德沛,杨泽红,赵雁南,贾培发,王家钦.新型时间序列相似性度量方法研究[J].计算机应用研究,2007,24(5):112-114. 被引量:24
  • 3Chiu B, Keogh E, Lonardi S.Probablistie discovery of time series motifs[C]//Proc of the 9th ACM SIGKDD Interna- tional Conference on Knowledge Discovery and Data Mining.New York : ACM Press, 2003 : 493-498.
  • 4Keogh E, Ratanamabatana C A.Extraet indexing of dynamic time warping[J].Knowledge and Information Systems, 2005, 7:358-386.
  • 5Jeong Young-Seon, Jeong Myong K, Omitaomu Olufemi A.Weighted dynamic time warping for time classification[J]. Pattern Recognition, 2011,44 (9) : 2231-2240.
  • 6Banko Z, Abonyi J.Colleration based dynamic time warping of multivariate time series[J].Expert Systems with Appli- cations, 2012,39(17) : 12814-12823.
  • 7Lin J, Keogh E,Lonardi S.A symbolic representation of time series,with implications for Streaming Algorithms[C]// Proc of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.New York: ACM Press, 2003 : 2-11.
  • 8李海林,郭崇慧.基于形态特征的时间序列符号聚合近似方法[J].模式识别与人工智能,2011,24(5):665-672. 被引量:18
  • 9王达,荣冈.时间序列的模式距离[J].浙江大学学报(工学版),2004,38(7):795-798. 被引量:40
  • 10Naess A,Gaidai O.Estimation of extreme values from sampled time series[J].Structural Safety, 2009, 31 (4) : 325-334.

二级参考文献26

  • 1肖辉,胡运发.基于分段时间弯曲距离的时间序列挖掘[J].计算机研究与发展,2005,42(1):72-78. 被引量:59
  • 2董晓莉,顾成奎,王正欧.基于形态的时间序列相似性度量研究[J].电子与信息学报,2007,29(5):1228-1231. 被引量:34
  • 3张建业,潘泉,张鹏,梁建海.基于斜率表示的时间序列相似性度量方法[J].模式识别与人工智能,2007,20(2):271-274. 被引量:36
  • 4AGRAWAL R, FALOUTSOS C, SWAMI A. Efficient similarity search in sequence database [A]. Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithm [C]. New York:Springer, 1993.
  • 5CHAN K, FU W. Efficient time series matching by wavelets [A]. Proceedings of the 15th IEEE International Conference on Data Engineering [C]. Sydney:IEEE, 1999.
  • 6KEOGH E. Fast similarity search in the presence of longitudinal scaling in time series databases [A]. Proceedings of the 9th International Conference on Tools with Artificial Intelligence [C]. Newport Beach: IEEE,1997.
  • 7PAVILIDIS T, HOROWITZ S. Segmentation of plane curves [J]. IEEE Trans on Computation, 1974, C23(8):859--870.
  • 8HanJiawei MichelineKambe.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 9ANDRE J H,BADAL D.Using signature files for querying time-series data:proceedings of Principles of Data Mining and Knowledge Discovery,the 1st European Symposium Trondheim[C].Norway:[s.n.],1997:211-220.
  • 10LIN J,KEOGH E,LONARDI S,et al.A symbolic representation of time series,with implications for streaming algorithms:proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery[C].San Diego:[s.n.],2003:2-11.

共引文献77

同被引文献27

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部