期刊文献+

改进型Q-NLM算法在医学图像去噪中的应用 被引量:3

Advanced Q-NLM algorithm application in medical image denoising
下载PDF
导出
摘要 将像素离群度与传统非局部均值算法相结合提出一种改进型的非局部均值滤波Q-NLM算法,针对传统非局部均值算法不适应脉冲噪声去噪的问题,提出了像素离群度Q的概念,像素离群度Q值用于判断原像素与脉冲噪声的相似度,依据像素离群度Q值划分像素区域,调整不同区域阈值且引入中值滤波去除脉冲噪声点,进一步降低医学图片中混合噪声对滤波的影响。仿真实验结果显示,这种结合离群度与非局部均值算法在去除混合噪声的情况下,能较好提高图像信噪比,有效保留CT图像细节。 The pixel quotient is combined with traditional nonlocal means algorithm, putting forward a kind of improved nonlocal means filtering algorithm. That is Q-NLM. In allusion to the problem of the impulsive noise in the traditional nonlocal means algorithm, the concept of the pixel quotient Q is come up with. It is used for judging the similarity of the initial pixel and impulse noise, and according to the calculated Q to divide pixel areas, the median filter is brought in to re-move impulse noise points while adjusting different area threshold. Thus it can further reduce the influence of the mixed noise on filter in medical images. The relevant simulation experiment results show that the combination of the pixel quotient with traditional nonlocal means algorithm can improve the image PSNR, effectively keep the details of CT image while removing the mixed noise.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第10期174-176,181,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.11164009)
关键词 像素离群度 非局部均值算法 区域阈值 信噪比 pixel quotient nonlocal means algorithm area threshold signal to noise ratio
  • 相关文献

参考文献1

二级参考文献20

  • 1付树军,阮秋琦,李玉,王文洽.基于各向异性扩散方程的超声图像去噪与边缘增强[J].电子学报,2005,33(7):1191-1195. 被引量:22
  • 2刘芳,刘文学,焦李成.基于复小波邻域隐马尔科夫模型的图像去噪[J].电子学报,2005,33(7):1284-1287. 被引量:13
  • 3Eng H L, Ma K K. Noise adaptive soft-switching median filter for image denoising [ A ] . In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing [ C ], Istanbul, Turkey, 2000: 2175-2178.
  • 4Khryashchev V V, Apalkov I V, Priorov A L,et al. Image denoising using adaptive switching median filter [ A ]. In: Proceedings of IEEE International Conference on Image Processing [ C ] , Genova, Italy, 2005: 117-120.
  • 5Yang P, Basir O A. Adaptive weighted median filter using local entropy for ultrasonic image de-noising [ A ]. In: Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis [ C] ,Rome, Italy, 2003: 799-803.
  • 6Chen Y, Han C. Adaptive wavelet threshold for image denoising [J]. Electronics Letters, 2005, 41(10) : 586-587.
  • 7Donoho D L. De-noising by soft-thresholding [ J]. IEEE Transactions on Information Theory, 1995, 41 (3) : 613-627.
  • 8Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression [ J ]. IEEE Transactions on Image Processing, 2000, 9(9): 1532-1546.
  • 9Portilla J. Full blind denoising through noise covariance estimation using gaussian scale mixtures in the wavelet domain [ A ]. In: International Conference on Image Processing [ C ], Singapore, 2004 : 1217-1220.
  • 10Samsonov A A, Johnson C R. Noise-adaptive anisotropic diffusion filtering of MR1 images reconstructed by SENSE (sensitivity encoding) method [ A ]. In: Proceedings of IEEE International Symposium on Biomedical Imaging: Macro to Nano [ C ], Washington DC, USA, 2002:701-704.

共引文献43

同被引文献23

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部