期刊文献+

Key Frames Extraction Based on the Improved Genetic Algorithm

Key Frames Extraction Based on the Improved Genetic Algorithm
下载PDF
导出
摘要 In order toovercomethe poor local search ability of genetic algorithm, resulting in the basic genetic algorithm is time-consuming, and low search abilityin the late evolutionary, we use thegray coding instead ofbinary codingatthebeginning of the coding;we use multi-point crossoverto replace the originalsingle-point crossoveroperation.Finally, theexperimentshows that the improved genetic algorithmnot only has a strong search capability, but also thestability has been effectively improved. In order toovercomethe poor local search ability of genetic algorithm, resulting in the basic genetic algorithm is time-consuming, and low search abilityin the late evolutionary, we use thegray coding instead ofbinary codingatthebeginning of the coding;we use multi-point crossoverto replace the originalsingle-point crossoveroperation.Finally, theexperimentshows that the improved genetic algorithmnot only has a strong search capability, but also thestability has been effectively improved.
出处 《Computer Aided Drafting,Design and Manufacturing》 2014年第4期74-78,共5页 计算机辅助绘图设计与制造(英文版)
关键词 key frames extraction grey code binary code genetic algorithm key frames extraction grey code binary code genetic algorithm
  • 相关文献

参考文献2

二级参考文献19

  • 1沈军行,孙守迁,潘云鹤.从运动捕获数据中提取关键帧[J].计算机辅助设计与图形学学报,2004,16(5):719-723. 被引量:44
  • 2杨涛,肖俊,吴飞,庄越挺.基于分层曲线简化的运动捕获数据关键帧提取[J].计算机辅助设计与图形学学报,2006,18(11):1691-1697. 被引量:27
  • 3Lim IS, Thalmann D. Key Posture Extraction out of Human Motion Data by Curve Simplification [C]// Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turke.y, 2001. USA: IEEE, 2001:1167-1169.
  • 4Xiao J, Zhuang Y, Wu F, et al. A Group of Novel Approaches and a Toolkit for Motion Capture Data Reusing [J]. Multimedia Tools and Applications (S1380-7501), 2009, 1-30.
  • 5Wang J, Bodenheimer B. An Evaluation of a Cost Metric for Selecting Transitions between Motion Segments [C]// Proceedings of the ACM SIGGRAPH/Eurographics symposium on Computer animation, San Diego, California, USA: Eurographics Association, 2003: 232-238.
  • 6Onuma K, Faloutsos C, Hodgins JK. FMDistance: A Fast and Effective Distance Function for Motion Capture Data [C]// Proceedings of ACM Eurograpbics, Short Papers, Dublin, Ireland, USA: ACM, 2008.
  • 7Lee J, Chai J, Reitsma PSA. Interactive Control of Avatars Animated with Human Motion Data [J]. ACM Transactions on Graphics (S0730-0301), 2002, 21(3): 491-500.
  • 8Forbes K, Fiume E. An Efficient Search Algorithm for Motion Data Using Weighted PCA [C]// Proceedings of the ACM SIGGRAPH/ Eurographics Symposium on Computer Animation, Los Angeles, California, USA: ACM, 2005: 67-76.
  • 9Cuntoor N, Chellappa R. Key Frame-Based Activity Representation Using Antieigenvalues [C]// Proceedings of Asian Conference on Computer Vision (ACCV), Hyderabad, India: Springer Berlin/ Heidelberg, 2006: 499-508.
  • 10http://mocap.cs.cmu.edu/.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部