摘要
In this paper, we obtain some stability results for perturbed vector equilibrium problems. Under new assumptions, which are weaker than the assumption of C-strict monotonicity, we provide sufficient conditions for the Painlev^-Kuratowski Convergence of the weak efficient solution sets and efficient solution sets for the perturbed vector equilibrium problems with a sequence of mappings converging in real linear metric spaces. These results extend and improve some known results in the literature.
In this paper, we obtain some stability results for perturbed vector equilibrium problems. Under new assumptions, which are weaker than the assumption of C-strict monotonicity, we provide sufficient conditions for the Painlev^-Kuratowski Convergence of the weak efficient solution sets and efficient solution sets for the perturbed vector equilibrium problems with a sequence of mappings converging in real linear metric spaces. These results extend and improve some known results in the literature.
基金
Supported by the National Natural Science Foundation of China(No.11301571.11271389.11271391)
the Natural Science Foundation Project of ChongQing(No.CSTC,2012jjA00016.2011BA0030)
the Education Committee Research Foundation of ChongQing(KJ130428)