期刊文献+

Painlevé-Kuratowski Convergences of the Solution Sets for Perturbed Vector Equilibrium Problems without Monotonicity 被引量:3

Painlevé-Kuratowski Convergences of the Solution Sets for Perturbed Vector Equilibrium Problems without Monotonicity
原文传递
导出
摘要 In this paper, we obtain some stability results for perturbed vector equilibrium problems. Under new assumptions, which are weaker than the assumption of C-strict monotonicity, we provide sufficient conditions for the Painlev^-Kuratowski Convergence of the weak efficient solution sets and efficient solution sets for the perturbed vector equilibrium problems with a sequence of mappings converging in real linear metric spaces. These results extend and improve some known results in the literature. In this paper, we obtain some stability results for perturbed vector equilibrium problems. Under new assumptions, which are weaker than the assumption of C-strict monotonicity, we provide sufficient conditions for the Painlev^-Kuratowski Convergence of the weak efficient solution sets and efficient solution sets for the perturbed vector equilibrium problems with a sequence of mappings converging in real linear metric spaces. These results extend and improve some known results in the literature.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2014年第4期845-858,共14页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(No.11301571.11271389.11271391) the Natural Science Foundation Project of ChongQing(No.CSTC,2012jjA00016.2011BA0030) the Education Committee Research Foundation of ChongQing(KJ130428)
关键词 stability Painlev6-Kuratowski convergence efficient solution perturbed vector equilibrium prob-lem SCALARIZATION stability Painlev6-Kuratowski convergence efficient solution perturbed vector equilibrium prob-lem scalarization
  • 相关文献

参考文献28

  • 1Aubin, J.P., Ekeland, I. Applied Nonlinear Analysis. John Wiley and Sons, New York, 1984.
  • 2Aubin, J.P., Frankowska, H. Set-Valued Analysis. Birkhanser, Boston, 1990.
  • 3Anh, L.Q., Khanh, P.Q. On the stability of the solution sets of general multivalued vector quasiequilibrium problems. Journal of Optimization Theorey and Applications, 135: 271-284 (2007).
  • 4Berge, C. Topological Spaces. Oliver and Boyd, London, 1963.
  • 5Chen, C.R., Li, S.J., Teo, K.L. Solution semicontinuity of parametric generalized vector equilibrium prob?lems. Joural of Global Optimization, 45: 30318 (2009).
  • 6Chen, C.R., Li, S.J. On the solution continuity of parametric generalized systems. Pacific Journal of Optimization, 6: 141-151 (2010).
  • 7Cheng, Y.H., Zhu, D.L. Global stability results for the weak vector variational inequality. Joural of Global Optimization, 32: 543-550 (2005).
  • 8Chen, G.Y., Huang, X.X., Yang, X.Q. Vector Optimization: Set-valued and Variational Analysis. Springer, Berlin, 2005.
  • 9Durea, M. On the existence and stability of approximate solutions of perturbed vector equilibrium problems. Journal of Mathematical Analysis and Applications, 333: 1165-1179 (2007).
  • 10Fang, Z.M., Li, S.J., Teo, K.L. Painleve-Kuratowski Convergence for the solution sets of set-valued weak vector variational inequalities. Journal of Inequalities and Applications, Volume 2008, Article ID 435719, 14 pages (2008).

同被引文献5

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部