期刊文献+

A Class of Backward Doubly Stochastic Differential Equations with Discontinuous Coefficients 被引量:3

A Class of Backward Doubly Stochastic Differential Equations with Discontinuous Coefficients
原文传递
导出
摘要 In this work the existence of solutions of one-dimensional backward doubly stochastic differential equations (BDSDEs) with coefficients left-Lipschitz in y (may be discontinuous) and Lipschitz in z is studied. Also, the associated comparison theorem is obtained. In this work the existence of solutions of one-dimensional backward doubly stochastic differential equations (BDSDEs) with coefficients left-Lipschitz in y (may be discontinuous) and Lipschitz in z is studied. Also, the associated comparison theorem is obtained.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2014年第4期965-976,共12页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(Nos.11371226,11071145,11301298,11201268 and 11231005) Foundation for Innovative Research Groups of National Natural Science Foundation of China(No.11221061) the 111 Project(No.B12023) Natural Science Foundation of Shandong Province of China(ZR2012AQ013)
关键词 backward doubly stochastic differential equations backward stochastic integral comparisontheorem backward doubly stochastic differential equations, backward stochastic integral, comparisontheorem
  • 相关文献

参考文献21

  • 1Bally, V., Matoussi, A. Weak solutions for SPDEs and backward doubly stochastic differential equations. J. Theoret. Probab., 14(1): 125-164 (2001).
  • 2Duffie, D., Epstein, L. Stochastic differential utilities. Econometrica, 60(2): 354-439 (1992).
  • 3Hamadene, S., Lepeltier, J.-P. Backward equations, stochastic control and zero-sum stochastic differential games. Stoch. Stoch. Rep., 54(3-4): 221-231 (1995).
  • 4Hu, L., Ren, Y. Stochastic PDIEs with nonlinear Neumann boundary conditions and generalized backward doubly stochastic differential equations driven by Levy processes. J. Comput. Appl. Math., 229(1): 230-239 (2009).
  • 5Hu, M., Peng, S. On representation theorem of G-expectations and paths of G-Brownian motion. Acta Mathematicae Applicatae Sinica, 25(3): 539-546 (2009).
  • 6Jia, G. A generalized existence theorem of BSDEs. C. R. Acad. Sci. Paris, Ser. I, 342(9): 685-688 (2006).
  • 7Jia, G. On existence of backward stochastic differential equations with left-Lipschitz coefficient. Chin. J. of Contemp. Math., 28(4): 345-354 (2007) (in Chinese).
  • 8Jiang, L., Chen, Z. A result on the probability measures dominated by g-expectation. Acta Mathematicae Applicatae Sinica, 20(3): 1-6 (2004).
  • 9Kim, K. Lp estimates for SPDE with discontinuous coefficients in domains. Electron. J. Probab. 10(1): 1-20 (2005).
  • 10Lin, Q. A class of backward doubly stochastic differential equations with non-Lipschitz coefficients. Statist. Probab. Lett., 79(20): 2223-2229 (2009).

同被引文献21

  • 1韩宝燕,邢培旭.非Lipschitz条件下的倒向重随机微分方程[J].河南师范大学学报(自然科学版),2007,35(4):26-29. 被引量:2
  • 2Pardoux E, PENG S. Adapted solution of a backward stochastic differential equation[J]. Systems Control Letters, 1990, 14:55-6l.
  • 3Lepeltier J P, San Martin J. Backward stochastic differential equations with continuous coefficient[J]. Statistics and Probability Letters, 1997, 32:425-430.
  • 4MAO X. Adapted solution of backward stochastic differential equations with non-Lipschitz coefficients[J]. Stochastic Processes and their Applications, 1995, 58:281-292.
  • 5EI Karoui N, PENG S, Quenez M C. Backward stochastic differential equation in finance[J], Mathematical Finance, 1997,7:1-72.
  • 6FAN S, JIANG L, TIAN D. One-dimensional BSDEs with finite and infinite time horizons[J]. Stochastic Processes and their Applications, 2011, 121:427-440.
  • 7JIA G. A class of backward stochastic differential equations with discontinuous coefficients[J]. Statistics and Probability Letters, 2008, 78:231-237.
  • 8Pardoux E, PENG S. Backward doubly stochastic differential equations and systems of quasilinear SPDEs[J]. Probability Theory and Related Fields, 1994, 98(2):209-227.
  • 9SHI Y, GU Y, LIU K. Comparison theorem of backward doubly stochastic differential equations and applications[J]. Stochastic Analysis and Application, 2005, 23(1):1-14.
  • 10LIN Q. Backward doubly stochastic differential equations with weak assumptions on the coefficients[J]. Applied Mathematics and Computation, 2011, 217:9322-9333.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部