期刊文献+

Existence of Pseudo-Almost Automorphic Solutions for Nonlinear Differential Equations

Existence of Pseudo-Almost Automorphic Solutions for Nonlinear Differential Equations
原文传递
导出
摘要 In this paper, we discuss the existence of pseudo-almost automorphic solutions to linear differential equation which has an exponential trichotomy~ and the results also hold for some nonlinear equations with the form x'(t) = f(t,x(t)) + λg(t,x(t)), where f,g are pseudo-almost automorphic functions. We prove our main result by the application of Leray-Schauder fixed point theorem. In this paper, we discuss the existence of pseudo-almost automorphic solutions to linear differential equation which has an exponential trichotomy~ and the results also hold for some nonlinear equations with the form x'(t) = f(t,x(t)) + λg(t,x(t)), where f,g are pseudo-almost automorphic functions. We prove our main result by the application of Leray-Schauder fixed point theorem.
作者 Lan LI YAN WANG
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2014年第4期977-988,共12页 应用数学学报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant No.11126070 and 11201309 the Natural Science Foundation of SZU(201111) supported the National Natural Science Foundation of China under Grant No.11026168 and 11201046 the Fundamental Research Funds for the Central Universities in China(DUT12LK32,DUT13JS02)
关键词 Pseudo-almost automorphic exponential trichotomy Leray-Schauder fixed point theorem Pseudo-almost automorphic exponential trichotomy Leray-Schauder fixed point theorem
  • 相关文献

参考文献16

  • 1Bochner, S. Continuous mappings of almost automorpic and almost periodic functions. Proc. Natl. Acad. Sci. USA, 52: 907-910 (1964).
  • 2Bohr, H. Almost periodic functions. Chelsea Publishing Company, New York, 1947.
  • 3Bugajewski, D., N'Cuerekata, C.M. On the topological structure of almost automorphic and asymptotically almost automorphic solutions of differential and integral equations in abstract spaces. Nonlinear Anal., 59: 1333-1345 (2004).
  • 4Bugajewski, D., Diagana, T., Mahop, C.M. Asymptotic and pseudo almost periodicity of convolution operator and applications to differential and integral equations. Z. Anal. Anwendungen, 25: 327-340 (2006).
  • 5Diagana, T. Existence of p-almost automorphic mild solution to some abstract differential equations. Int. J. Evol. Equ., 1(1): 7-67 (2005).
  • 6Ding, H.S., Liang, J., Xiao, T.J. Almost automorphic solutions to nonautonomous semilinear evolution equations in Banach spaces. Non. Anal., 73: 1426-1438 (2010).
  • 7Elaydi, S., Hajek, O. Exponential trichotomy of differential systems. J. Math. Anal. Appl., 129: 362-374 (1988).
  • 8Goldstein, J .A., N'Ouerekata, C.M. Almost automorphic solutions of semilinear evolution equations. Proc. Amer. Math. Soc., 133: 2401-2408 (2005).
  • 9Hong, J.L., Obaya, R., Cil, A.S. Exponential trichotomy and a class of ergodic solutions of differential equations with ergodic perturbations. Appl. Math. L., 12: 7-13 (1999).
  • 10Liang, J., Zhang, J., Xiao, T.J. Composition of pseudo almost automorphic functions. J. Math. Anal. Appl., 340: 1493-1499 (2008).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部