期刊文献+

金膜的纳米孔结构在线偏振光下产生涡旋阵列

A VORTEX ARRAY GENERATED BY A NANOHOLES GOLD FILM ILLUMINATED WITH LINEARLY POLARIZED LIGHT
下载PDF
导出
摘要 通过在金膜上刻蚀纳米孔结构,我们用线偏振光照射样品表面并在一定衍射距离处采集衍射场的信息而得到七个有序排列的涡旋组成涡旋阵列.实验中我们搭建了马赫-曾德尔干涉仪,用CCD记录在样品远离物面不同距离处产生的衍射场和在有参考光照射下产生的干涉条纹图.在得到的光强图样中出现了七个涡旋有序排列中心处,我们称之为七涡旋阵列.通过改变衍射距离,我们观察了七涡旋阵列的演化.此外,我们利用傅里叶变换的方法提取了光强图样对应的相位分布. We obtain a vortex array with seven vortices at a certain diffraction distance in the diffraction fields generated by a gold six nanoholes film illuminated with linearly polarized light. In the experiment, we set up a Mach -Zehnder type interferometer. A CCD is used to record the diffraction fields and the interference pattern of the diffraction fields and reference beam at different distances from the object plane. In the intensity pattern, we note that seven well -ordered vortices appear in the central area, and we call them as a vortex array with seven vortices. By changing the diffraction distance, we observe the evolvement of the vortex array. In addition, we reconstruct the phase distribution corresponding to the intensity pattern with the Fourier transform method.
出处 《山东师范大学学报(自然科学版)》 CAS 2015年第2期62-64,68,共4页 Journal of Shandong Normal University(Natural Science)
关键词 表面等离子体激元 涡旋阵列 衍射 相位分布 surface plasmon polaritons vortex array diffraction phase distribution
  • 相关文献

参考文献14

  • 1Barnes W I,, Dereux A, Ebbesen T W, Surface plasmon subwavelength optics[ J]. Nature , 2003,424(6950):824 -830.
  • 2Fan W. Wei L. Zmlg H P, et al. Realizing a Gabor zone plate with quasi -random distributed hexagou dots[J]. Opt Express, 2013,21 (2) : 1473 - 1478.
  • 3Ishii S, Kildishev A V, Shalaev V M, et al. Metal nanoslit lends with polarization -selective design[J]. Optics Lett, 2011,36(4) :451 -453.
  • 4Liu Z W, Steele J M, Srituravanich W, et al. Focusing Surface Plasmons with a Plasmonic Lens[J]. Nano Lett, 2005,5(9) :1726 - 1729.
  • 5Zhang Y, Barhoumi A, Lassiter J B, et al. Orientation - Preserving Transfer and Diretional Light Scattering from hlividual Light - Bending Nanopartieles [ J ]. Nano Lett, 2011,11 (4) : 1838 - 1844.
  • 6Ishii S, Kildishev A V, Shalaev V M, et al. Controlling the wave focal structure of metallic nanoslit lenses with liquid crystals[ J ]. Laser Phys Lett, 2011,8( 11 ) :828 - 832.
  • 7Steele J M, Liu Z W, Wang Y, et al. Resonant and non -resonant generation and focusing of surface plasmons with circular gratings[ J ]. Opt Express, 2006,14(12) :5664 - 5670.
  • 8Lerman G M, Yanai A, Levy U. Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light [ J ]. Nano Lett, 2009,9(5 ) :2139 - 2143.
  • 9. Gjonaj B, Aulbaeh J, Johnson P M, et al. Focusing and Scanning Microscopy with Propagating Surface Plasmons[ J]. Phys Rev Lett, 2013,110 (26) :266804.
  • 10Gordon R, Brulo A G. Increased cut -off wavelength for a subwavelength hole in a real metal[ J]. Opt Express, 2005,13 (6) : 1933 - 1988.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部