期刊文献+

基于自适应仿生网络的非特定物体在线识别

Adaptive Bio-network Based Online Non-specific Object Recognition
下载PDF
导出
摘要 目前的物体识别算法框架大多是训练与识别过程相对独立,这就造成系统只对训练过的类别有识别能力,如果物体或者环境发生变化,识别将失败,这大大降低了系统的适应性、可扩展能力和实时性。针对这个问题,提出一种基于自适应仿生网络的识别算法,算法通过多层神经网络模拟人类记忆结构,将学习到的物体知识存储之网络节点,且网络是可在线拓展的,使得系统可在线学习新的陌生物体,具有自适应性。实验表明,提出的算法能有效地改变传统识别框架带来的局限,能在线识别非特定的多种物体。 Most of the current object recognition algorithm framework is a relatively independent training and recognition process which result in the system can only recognize the learned objects .If the object or environment changes , recognition will fail , it greatly reduces the system's adaptability , extensible ability and real-time performance .Aiming at this problem , a kind of recognition algorithm based on adaptive bio-network is proposed .This algorithm uses the multi-layer neural network to simulation human memory structure , which will store the learned objects to network nodes as knowledge storage , and the network can be expand online , which makes the system can be online learning new objects .Experimental results show that the proposed algorithm can effectively change the limitation of traditional recognition framework , and is capable of on-line recognition of non-specific various objects .
作者 瞿心昱
出处 《杭州电子科技大学学报(自然科学版)》 2015年第2期38-40,共3页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 浙江省教育厅科研资助项目(Y201431313) 浙江省交通运输厅交通教育科研专项计划资助项目(2013J02)
关键词 自适应仿生网络 非特定 记忆结构 在线识别 adaptive bio-network non-specific memory structure online recognition
  • 相关文献

参考文献8

  • 1Je H, Kim J, Kim D. Hand gesture recognition to understand musical conducting action [ C]//Robot and Human interactive Communication, 2007. RO-MAN 2007. The 16th IEEE International Symposium on. IEEE,2007:163 -168.
  • 2Fang Y, Wang K, Cheng J, et al. A real-time hand gesture recognition method[ C]//Multimedia and Expo, 2007 IEEE International Conference on. IEEE,2007:995 -998.
  • 3Bosch A, Zisserman A, Muoz X. Scene classification using a hybrid generative/discriminative approach [ J ]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2008,30 (4) :712 - 727.
  • 4Kirstein S, Wersing H, K6mer E. A biologically motivated visual memory architecture for online learning of objects[ J]. Neural Networks,2008,21 ( 1 ) :65 -77.
  • 5Ozawa S, Pang S, Kasabov N: A Modified Incremental Principal Component Analysis for On-line Learning of Feature Space and Classifier [ J ]. Trends in Artificial Intelligence, 2004 -231 - 240.
  • 6Jiang X, Motai Y. Learning by observation of robotic tasks using on-line pca-based eigen behavior[ C ]//Computational Intelligence in Robotics and Automation, 2005. CIRA 2005. Proceedings. 2005 IEEE International Symposium on. IEEE,2005:391 - 396.
  • 7Artac M, Jogan M, Leonardis A. Incremental PCA for on-line visual learning and recognition[ C ]//Pattern Recognition, 2002. Proceedings. 16th International Conference on. IEEE ,2002 ,3 :781 -784.
  • 8Furao S, Hasegawa O. An incremental network for on-line unsupervised classification and topology learning [ J ]. Neural Networks,2006,19( 1 ) :90 - 106.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部