期刊文献+

区间线性系统的Farkas型定理

Farkas-type Theorem of Interval Linear System
下载PDF
导出
摘要 以逻辑量词的形式给出了区间线性方程组的(b)I-强可行、区间线性不等式组的(b)I-强可解和(b)I-强可行的Farkas型充要条件。为了应用方便,该文还建立了与前述结果等价的基于绝对值不等式的Farkas型条件。 In this paper, it describes Farkas-type necessary and sufficient conditions for ( bI )-strongly solvable and feasible of interval linear system , via universal and existential quantifiers .For the convenient choice in practice of theory , some different but equivalent forms of the Farkas-type conditions for interval linear systems are also discussed .
作者 夏梦雪 李炜
出处 《杭州电子科技大学学报(自然科学版)》 2015年第2期75-78,共4页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 国家自然科学基金资助项目(71471051) 浙江省自然科学基金资助项目(LY14A010028)
关键词 区间线性方程组 区间线性不等式组 Farkas型条件 interval linear equations interval linear inequalities Farkas-type condition
  • 相关文献

参考文献7

  • 1Rohn J. A Farkas-type theorem for linear interval equations[ J]. Gomputing, 1989,43 ( 1 ) :93 - 95.
  • 2Karademir S, Prokopyev O A. A short note on solvability of systems of interval linear equations. Linear Muhilinear Algebra[ J ]. Linear and Multilinear Algebra,2011,59 : (6) 707 - 710.
  • 3Rohn J. A Farkas-type theorem for interval linear inequalities [ J ]. Optimization Letters,2014,8 (4) : 1 591 - 1 598.
  • 4Xia M, Li W, Li H. Farkas-type theorems for interval linear systems[J]. Linear and Multilinear Algebra,2015,63(7) : 1 390-1 400.
  • 5Li H, Luo J, Wang Q. Solvability and feasibility of interval linear equations and Inequalities [ J ]. linear Algebra and its Applications ,2014,463:78 - 94.
  • 6Fiedler M, Nedoma J, Ramik J, et al. Linear Optimization Problems with Inexact Data[ M ]. New York: Springer,2006: 35 - 77.
  • 7Luo J, Li W. Strong optimal solutions of interval linear programming[ J]. Linear Algebra and its Applications,2013,439 (8) :2 479 -2 493.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部