期刊文献+

利用特征极值比的盲信道阶数估计方法 被引量:4

Employing Extreme Eigenvalues Ratio for Blind Channel Order Estimation
下载PDF
导出
摘要 确定性辨识方法是盲信道辨识的主流方法,然而确定性方法性能受信道阶数估计的严重影响。本文针对大多数信道阶数估计算法在坏信道条件下失效问题,分析子空间方法中噪声子空间矢量构成特殊矩阵的奇异性与信道阶数之间的关系,对该特殊矩阵最大特征值最小特征值的变化情况进行对比分析,利用特征极值的比值来反映信号子空间到噪声子空间的变化情况,从而提出特征极值比定理。针对观测数据有限且含噪声的实际应用条件,提出一种盲信道阶数估计算法,该算法以不同信道阶数的特征极值比作为参数构造目标函数,得到在真实信道阶数处目标函数取全局最大值,同时对该算法进行了复杂度分析。最后针对两种常用仿真信道参数对算法进行了验证,结果表明,在短数据和低信噪比条件下,本文算法能以较高的估计概率得到好信道和坏信道的有效阶数。 Blind channel order estimation is a key technique for deterministic blind channel identification based on second order statistics; many blind channel order estimation methods are useless under ill-conditioned channel environment. In subspace method,when channel order is correct and over determined,the special toeplitz matrix Q constituted by the noise vectors is singular,the radio of maximum and minimum singular value is infinity. This paper employs the maximum and minimum singular value ratio of the special matrix Q to establish an extreme eigenvalues theorem( MMR theorem). Considering the finite and noisy observation samples,this paper proposes a new channel order estimation algorithm( MMRR algorithm) based on MMR theorem; the goal function of the MMRR algorithm uses extreme eigenvalues ratio according to different order values,this function can get the global maximum at the correct and / or effective channel order. Finally,this paper employs typical channel parameters( well-conditioned channel and ill-conditioned channel) for simulation and analysis,under the finite samples and moderate SNRs,the simulation results show that this method can correctly estimate effective order of well-conditioned and ill-conditioned channels with high probability,which outperforms other existing algorithms.
出处 《信号处理》 CSCD 北大核心 2015年第5期528-535,共8页 Journal of Signal Processing
基金 国家自然科学基金资助项目(61471396)
关键词 盲信道辨识 信道阶数估计 特征极值比 子空间方法 blind channel identification channel order estimation extreme eigenvalues ratio subspace method
  • 相关文献

参考文献19

  • 1Giannakis G B, Hua Y, Stoica P, et al. Signal Process- ing Advances in Wireless and Mobil Communication, Vol. I: Trends in Channel Identification and Equalization [ M]. Prentice Hall PTR, 2001 : 3-12.
  • 2Yung C C, Chun F C, Horng C C, et al, Blind Equaliza- tion and System Identification: Batch Processing Algo- rithms, Performance and Applications [ M ]. London : Springer Vertag London, 2006: 8-10.
  • 3Rissanen J. Modeling by shortest data description [ C ]// Automatica, 1978, 14:465-471.
  • 4Akaike H. A new look at the statistical model identifica- tion [ J ]. IEEE Transactions on Automatic Control, 1974, 19(6) :716-723.
  • 5Liavas A P, Reglia P A, Delmas J P. Blind channel ap- proximation : Effective channel order determination [ J ]. IEEE Transactions on Signal Processing, 1999, 47 (12) : 3336-3344.
  • 6田营,葛临东,王彬,马艳清.两种改进的信道阶数估计算法[J].计算机应用研究,2012,29(1):119-122. 被引量:4
  • 7Awan M K, Aftab M F. Zeeshan, Channel Order Estima- tion in Cyclostationarity Based Blind Channel Equalization [ C ]//IEEE 9th International Muhitopic Conference, Ka- rachi, 2005 : 1- 6.
  • 8代松银,袁嗣杰,董书攀.基于子空间分解的信道阶数估计算法[J].电子学报,2010,38(6):1245-1248. 被引量:17
  • 9代松银,袁嗣杰,董书攀.信道均衡和阶数估计的联合子空间算法[J].信号处理,2009,25(8A):102—105.
  • 10Via J, Santamaria I, Perez J. Effective channel order es- timation based on combined identification/ equalization [ J ]. IEEE Transactions on Signal Processing, 2006, 54 (9) : 3518-3526.

二级参考文献20

  • 1Liavas A P,Regalia P A.On the behavior of information theoretic criteria for model order selection[J].IEEE Transaction on Signal Processing,2001,49(8):1689-1695.
  • 2Fjo De Ridder,Rik Pintelon,et al.Modified AIC and MDL model selection criteria for short data records[J].IEEE Transactions on Instrumentation and Measurement,2005,54(1):144-150.
  • 3Liavas A P,Regalia P A,Delmas J-P.Blind channel approximation:effective channel order determination[J].IEEE Transaction on Signal Processing,1999,47(12):3336-3344.
  • 4Javier Via,Ignacio Santamaria,Jesus Perez.Effective channel order estimation based on combined identification/equalization[J].IEEE Transaction on Signal processing,2006,54(9):3336-3344.
  • 5E Moulines,P Duhamel,et al.Subspace methods for the blind identification of multi-channel FIR filters[J].IEEE Transaction on Signal Processing,1995,43(2):516-525.
  • 6Tong L,Zhao Q. Blind channel estimation by least squares smoothing[A].Seattle,Washington,1998.2121-2124.
  • 7Moulines E,Duhamel P,Cardoso J F. Subspacemethods for the blind identification of multi-channel FIR Filters[J].IEEE Transactions on Signal Processing,1995,(02):516-525.doi:10.1109/78.348133.
  • 8Omar S M,Slock D,Bazzi O. Bayesian blind FIR channel estimation algorithms in SIMO system[A].Nice,France,2011.393-396.
  • 9Ridder F D,Pintelen R,Schoukens J. Modified AIC and MDL model selection criteria for short data records[J].IEEE Transactions on Instrumentation and Measurement,2005,(01):144-150.doi:10.1109/TIM.2004.838132.
  • 10Liavas A P,Regalia P. On the behavior of information theoretic criteria for model order selsection[J].IEEE Transactions on Signal Processing,2001,(08):1689-1695.doi:10.1109/78.934138.

共引文献18

同被引文献22

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部