期刊文献+

受约束的稀疏光束法平差在相机标定中的应用 被引量:5

Camera Calibration Optimization with Constrained Sparse Bundle Adjustment
下载PDF
导出
摘要 直接用稀疏的光束法平差(SBA)优化张正友单相机标定算法结果会得到多组不同的相机内部参数和畸变参数(统称相机参数)。本文在SBA数学模型的基础之上增加了相机参数相等的约束,建立了一种受约束的稀疏光束法平差(CSBA)模型,提出了一种新的矩阵分块策略,提高了稀疏线性方程组的求解效率。运用模拟实验,验证了CSBA算法在图像特征点像素坐标不具备零均值高斯误差时也能得到唯一的优化相机参数。最后将所提CSBA算法应用于双目立体视觉系统,实测实验结果表明,所提算法能够同时优化立体视觉中的相机内外部参数并提高三维重建结果的精度。 If Zhang's camera calibration results are optimized with SBA directly, different sets of camera parameters (internal parameters and distortion parameters) will be obtained. Based on the mathematical model of SBA and the equality constraints of camera parameters, a Constrained Sparse Bundle Adjustment (CSBA) algorithm is proposed with a new block matrix partition strategy to improve the efficiency of solving sparse linear equations. Simulation experiments are implemented to verify that unified camera parameters can be obtained even if the pixel coordinates don't have zero-mean Gaussian error. Finally, the CSBA algorithm is applied to a binocular stereo vision system. The experimental results demonstrate that the CSBA algorithm can optimize the camera parameters and position parameters simultaneously, and improve the accuracy of 3D reconstruction.
出处 《光电工程》 CAS CSCD 北大核心 2015年第5期13-19,共7页 Opto-Electronic Engineering
基金 国家自然科学基金(51005090,51205149)资助项目 高等学校博士学科点专项科研基金(20120142120006) 湖北省重大科技创新计划(2013AEA003) 材料成形与模具技术国家重点实验室自主研究项目(2014-01)
关键词 稀疏光束法平差 矩阵分块 摄像机标定 精度优化 sparse bundle adjustment block matrix partition method camera calibration accuracy optimization
  • 相关文献

参考文献18

  • 1Triggs B, McLauchlan P F, Hartley R I, et al. Bundle adjustment-a modem synthesis [C]// Vision Algorithms: Theory and Practice, Springer BerlinHeidelberg, 2000: 298-372.
  • 2胡建才,刘先勇,邱志强.基于因子分解和光束法平差的摄像机自标定[J].光电工程,2011,38(3):63-69. 被引量:12
  • 3ZHANG Yongjun, HU Kun, HUANG Rongyong. Bundle adjustment with additional constraints applied to imagery of the Dunhuang wall paintings [J]. ISPRS Journal of Photogrammetry and Remote Sensing(S0924-2716), 2012, 72:113-120.
  • 4Beall C, Dellaert F, Mahon 1, et al. Bundle adjustment in large-scale 3D reconstructions based on underwater robotic surveys [C]// OCEANS, Spain, IEEE, 2011: 1-6.
  • 5Cunningham A, Paluri M, Dellaert F. DDF-SAM: Fully distributed slam using constrained factor graphs [C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010: 3025-3030.
  • 6Blonquist K F, Pack R T. A bundle adjustment approach with inner constraints for the scaled orthographic projection [J]. ISPRSJournal of Photogrammetry and Remote Sensing(S0924-2716), 2011, 66(6): 919-926.
  • 7Lourakis M, Argyros A. The design and implementation of a generic sparse bundle adjustment software package based on the levenberg-marquardt algorithm [R]. Technical Report 340, Institute of Computer Science-FORTH, Heraklion, Crete, Greece, 2004: 1-28.
  • 8Snavely N, Seitz S M, Szeliski R. Modeling the world from internet photo collections [J]. International Journal of Computer Vision(S1573-1405), 2008, 80(2): 189-210.
  • 9WU Changchang, Agarwal S, Curless B, et al. Multicore bundle adjustment [C]//IEEE Computer Vision and Pattern Recognition(CVPR), 2011: 3057-3064.
  • 10ZHANG Zhengyou. A flexible new technique for camera calibration [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2000, 22(11): 1330-1334.

二级参考文献65

  • 1张爱武,孙卫东,李风亭.基于激光扫描数据的室外场景表面重建方法[J].系统仿真学报,2005,17(2):384-387. 被引量:30
  • 2贾世祥,俞建新.基于加权三角面法向变化的模型简化算法[J].系统仿真学报,2005,17(9):2111-2114. 被引量:6
  • 3江巨浪,张佑生,薛峰,胡敏.两步纹理映射的改进算法[J].系统仿真学报,2006,18(5):1157-1160. 被引量:16
  • 4李德仁.自检校光束法区域网平差中的验后权估计.武汉大学学报(信息科学版),1982,1:16-24.
  • 5Hartley R I. Self-calibration from multiple views with a rotating camera [C]//Proceedings of the Third European Conference on CompnterVision, Stockholm, Sweden, May2-6, 1994: 471-478.
  • 6Ma S D. A self-calibration technique for active vision system [J]. IEEE Transactions on Robot Automation(S 1042-296X) 1996, 12(1): 114-120.
  • 7Faugeras O D, Luong Q T, Maybank S J. Camera self-calibration: Theory and experiments [C]//Proceedings of the Second European Conference on Computer Vision, Santa Margherita Ligure, Italy, May, 1992: 321-334.
  • 8Maybank S J, Faugeras O D. A theory of self-calibration of a moving camera [J]. International Journal of Computer Vision(S0920-5691), 1992, 8(2): 123-151.
  • 9Hartley R I. Euclidean reconstruction from uncalibrated views [J]. Applications of invariance in Computer Vision(S0162-8828), 1994, 825: 235-256.
  • 10Triggs B. Auto-calibration and the absolute quadric [C]//Proceedings of Computer Vision and Pattern Recognition, San Juan, Puerto Rico, Jun 17-19, 1997: 609-614.

共引文献44

同被引文献36

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部