期刊文献+

基于云存储视频监控系统的研究 被引量:21

Research of video surveillance system based on cloud storage
下载PDF
导出
摘要 视频监控系统对海量视频数据存储和智能视频分析的需求日益突出。针对系统硬件计算能力有限,用户需求的多样性,系统扩展性复杂等问题,云存储技术有很大突破。通过虚拟化技术构建资源池,使用Hadoop分布式文件系统存储海量视频数据,使用Map/Reduce编程模型实现大数据并行计算,为用户提供实时视频监控和智能视频分析服务。 Demand for massive video data storage and intelligent video analysis of video surveillance system is outstanding. The limited of hardware calculation ability, the diverse needs of user, the complexity of system expansion and so on, cloud storage technology has great breakthrough. To provide users with real-time video monitoring and intelligent video analysis service, Building restmrce pool through virtualization technology, using the Hadoop Distributed File system store massive video data, using Map/Reduce programming model to realize large-scale parallel computing.
作者 张海山
出处 《电子设计工程》 2015年第10期169-171,共3页 Electronic Design Engineering
关键词 云计算 云存储 视频监控 HADOOP分布式文件系统 cloud computing cloud storage video surveillance Hadoop distributed file system
  • 相关文献

参考文献5

  • 1MARSTONS.Cloud computing-the business perspective[J]. IEEE Conference Publications,2011:1-11.
  • 2李玲娟,张敏.云计算环境下关联规则挖掘算法的研究[J].计算机技术与发展,2011,21(2):43-46. 被引量:48
  • 3张明.浅谈云存储技术与应用[J].甘肃科技纵横,2010,39(3):15-17. 被引量:3
  • 4Castleman K K,Digital Image Processing[M].America:Electric And Industry Press,2011.
  • 5Attebury G, Baranovski A,Bloom K,et al.Hadoop distributed file system for the grid [C]//Proceedings of the IEEE Nuclear Science Symposium Conference2009,2009:1056-1061.

二级参考文献12

  • 1刘华元,袁琴琴,王保保.并行数据挖掘算法综述[J].电子科技,2006,19(1):65-68. 被引量:15
  • 2王灵俊.云计算:21世纪的商业平台[M].北京:电子工业出版社,2008.
  • 3邹恒明.计算机的心智:操作系统之哲学原理[M].北京:机械工业出版社,2004.
  • 4张云涛,龚玲.数据仓库与数据挖掘[M].北京:电子工业出版社,2004.
  • 5Weiss A. Computing in Clouds[ J]. ACM Networker,2007,11 (4) : 18-25.
  • 6Buyya R, Yeo C S, Venugopal S. Market-Oriented Cloud Computing : Vision, Hype, and Reality for Delivering IT Services as Computing Utilities[ C ]//Proceedings of the 2008 10^th IEEE International Conference on High Performance Computing and Communications. [ s. l. ] : [ s. n. ] ,2008 : 5-13.
  • 7Apache. Hadoop [ EB/OL]. 2006. http://lucene, apache. org/hadoop/.
  • 8Dean J, Ghemawat S. Mapreduce: Simplified data processing on large clusters [ C ]//Proceedings of the 6th Symposium on Operating System Design and Implementation. San Francisco, California, USA : USENIX Association, 2004 : 137-150.
  • 9Wu X, Kumar V, Ghosh R J, et al. Top 10 algorithms in data mining[J]. Knowledge and Information Systems,2008,14 (1) :1-37.
  • 10Agrawal R, Sharer J C. Parallel Mining of Association Rules [ J]. IEEE Transactions on Knowledge and Data Engineering, 1996,8 ( 6 ) : 962- 969.

共引文献49

同被引文献111

引证文献21

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部