期刊文献+

以粒子蜂群网络建立高性能混凝土坍落度模型 被引量:2

Modelling slump model of high-performance concrete using particle bee neural network
下载PDF
导出
摘要 以粒子蜂群算法(particle bee algorithm,PBA)结合神经网络(artificial neural network,NN),发展出一套能预测高性能混凝土(high-performance concrete,HPC)坍落度模型的方法。以演化运算树(genetic operation tree,GOT)及倒传递网络(back-propagation network,BPN)两种已发表的方法来比较其准确度。从模型的准确度可知,粒子蜂群网络(particle bee neural network,PBNN)模型预测的准确度高于GOT,但接近BPN的准确度;从参数的影响性可知,PBNN显示水、强塑剂、粗骨材、细骨材、粉煤灰及水泥添加量对于HPC坍落度的影响性大,而高炉矿渣粉用量对HPC坍落度并不敏感,显示各项材料对于坍落度的影响仍具备高度复杂性。 This study used particle bee algorithm( PBA) combined with artificial neural network( NN) to predict the slump model of high-performance concrete( HPC). This study also compared the accuracy of the results with two proposed methods: genetic operation tree( GOT) and backpropagation network( BPN). The results show that particle bee neural network( PBNN) is more accurate than GOT and closer to BPN. Besides,the addition amount of the parameters such as water,super plasticizer,coarse aggregate,fine aggregate,fly ash and cement has a high influence on the slump of HPC,while the amount of blast-furnace slag has a small influence on the slump of HPC. It shows that the impacts of those materials on the slump are still a high degree of complexity.
出处 《福建工程学院学报》 CAS 2015年第1期1-9,共9页 Journal of Fujian University of Technology
基金 国家自然科学基金资助项目(51308120) 福建省自然科学基金资助项目(56237845)
关键词 粒子蜂群算法 高性能混凝土 演化运算树 倒传递网络 粒子蜂群网络 particle bee algorithm high-performance concrete genetic operation tree back-propagation network particle bee neural network
  • 相关文献

参考文献1

二级参考文献8

  • 1季韬,林挺伟,郑忠双,林旭健.水泥胶砂流动度预测方法的研究[J].建筑材料学报,2005,8(1):17-22. 被引量:9
  • 2季韬,林挺伟,郑忠双,林旭健.混凝土拌和物坍落度预测方法的研究[J].建筑材料学报,2005,8(2):159-163. 被引量:5
  • 3中华人民共和国建设部.JGJ 55-2000,普通混凝土配合比设计规程[S].北京:中国建筑工业出版社,2001..
  • 4中华人民共和国建设部.GBJ 146-90,粉煤灰混凝土应用技术规程[S].北京:中国标准出版社,1990..
  • 5YEH I C.Modeling concrete strength with augment-neuron networks[J].Journal of Materials in Civil Engineering,1998,10(4):263-268.
  • 6KASPERKIEWICZ J,RACZ J,DUBRAWSKI A.HPC strength prediction using artificial neural network[J].Journal of Computing in Civil Engineering,1995,9(4):279-284.
  • 7GOLTERMANN P,JOHANSEN V,PALBAL L.Packing of aggregate:An alternative tool to determine the optimal aggregate[J].ACI Material Journal,1997,94(5):435-443.
  • 8NФRGAARD M.Neural network based system identification toolbox(Tech Report 00-E-891) [R].Denmark:Department of Automation,Technical University of Denmark,2000.

共引文献32

同被引文献3

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部