期刊文献+

无溢流固阀板式热水塔热质传递特性

Heat and mass transfer performance on downcommerless fixed-valve tray applied in evaporating water tower
下载PDF
导出
摘要 以蒸汽、水为实验介质,研究气流床煤气化系统的关键设备之一——固阀板式热水塔的传热特性。利用塔板上汽液二相逆流热质传递过程能量方程,根据实验结果拟合出了预测传热效率的公式,并通过改变开孔率、孔径、阀高和孔间距等固阀塔板结构参数研究其对传热特性的影响。实验结果表明:传热效率预测值与实验值相符程度较高,验证了公式能较好地描述热水塔内蒸汽-水一元体系直接接触冷凝传热过程;传热效率随着传热单元数的增加而增加,在液汽比(质量比)为5—32实验操作范围内,传热效率一般低于55%;当传热效率较低时可以通过减小动能因子,增大传热单元数,从而提高传热效率;当传热效率较高时,可以适当减小开孔率、孔径和阀高,增加传热面积,提高传热效率,而孔间距对传热效率的影响可以忽略不计。 Based on steam and water as experimental medium, the heat transfer characteristics of fixed-valve plate hot water tower were studied, which was one of the key equipment of entrained-flow coal gasification system. The tray heat transfer efficiency was reviewed, and a mathematical model with energy transfer equation to predict the details of the heat and mass transfer process was proposed in a hot water tower. The relationships between heat transfer efficiency and measured parameters were found to predict the direct-contact condensation model on downcommerless trays. Furthermore, the tray geometry parameters of hole areas, hole diameter, valve height and hole center distance were investigated in the heat transfer process. The experimental results indicate that the influence of operating parameters on the heat efficiency is demonstrated for different operating conditions. The gas flow rate, liquid flow rate and tray parameters have considerable effects on heat efficiency. The heat transfer efficiency gets enhanced with the increase of heat transfer units NTU, but it is consistently lower than 55%. When the heat transfer efficiency is low, it can get increased through reducing the kinetic energy factor and increasing the heat transfer unit number. However, when it is high, it can only be increased by reducing the hole area, valve height and hole diameter. The influence of hole center distance on the heat efficiency can be negligible.
出处 《化学工程》 CAS CSCD 北大核心 2015年第5期25-29,48,共6页 Chemical Engineering(China)
基金 煤等含碳固体原料大规模高效清洁气化的基础研究(2010CB227000)
关键词 蒸发热水塔 撞击固阀板 热质同时传递 直接接触冷凝 汽液二相流 hotwater tower fixed-valve tray heat and mass transfer direct contact condensation steam-water two-phase flow
  • 相关文献

参考文献10

  • 1于广锁,龚欣,刘海峰,王亦飞,王辅臣,于遵宏.多喷嘴对置式水煤浆气化技术[J].现代化工,2004,24(10):46-49. 被引量:56
  • 2王亦飞,蒋超,张家佳,于广锁.板式塔应用于蒸发热水塔的研究[J].化学工程,2013,41(7):55-59. 被引量:2
  • 3Mahood H B, Sharif A O, Aibi S A1, et al. Analytical solution and experimental measurement for temperature distribution prediction of three-phase direct-contact condenser[J]. Energy, 2014, 67(4) :538-547.
  • 4LI Y, KLAUSNER J F, MEI R W, et al. Direct contact condensation in packed beds [ J]. International Journal of Heat and Mass Transfer, 2006, 49 ( 25 ) :4751-4761.
  • 5GENIC' S B. Direct contact condensation heat transfer on downeommerless trays for steam-water system [ J ]. Inter- national Journal of Heat and Mass Transfer, 2006, 49 (7/ 8 ) : 1225-1230.
  • 6GENIC' S B, Jacimovic B M,Vladic L A. Heat transfer rate of direct-contact condensation on baffle trays [ J ]. International Journal of Heat and Mass Transfer', 2008, 51 (25/26) :5772-5776.
  • 7BEDEKAR S V, NITHIARASU P, SEETHARAMU K N. Experimental investigation of the performance of a counter flow packed bed mechanical cooling tower [ J ]. Energy, 1998,23 ( 11 ) :943-947.
  • 8OSTERLE F. On the analysis of counter-flow cooling tow- ers [ J ]. International Journal of Heat and Mass Transfer, 1991,34(4/5) :1313-1316.
  • 9BAEHR H D, STEPHAN K. Heat and Mass Transfer[M].Germany: Springer-Verlag Berlin Heidelberg, 2006.
  • 10曹睿,刘艳升,严超宇,王东升,仵浩.垂直锐边孔口的自由出流特性(Ⅰ) 流动状态和孔结构参数对孔流系数的影响[J].化工学报,2008,59(9):2175-2180. 被引量:20

二级参考文献22

  • 1赵现新,姚克俭,王良华,蒋军荣.锥形筛孔塔板孔流系数的研究[J].石油化工,2004,33(5):428-431. 被引量:7
  • 2王雷,杨宝贵.镇海炼化对二甲苯装置抽余液塔改造[J].炼油技术与工程,2005,35(12):22-28. 被引量:3
  • 3李育敏,俞晓梅.悬挂式降液管液流孔气液流动状态研究[J].化学工程,2006,34(10):24-26. 被引量:6
  • 4杜佩衡,杜剑婷.喷射型立体传质塔板在饱和热水塔中的应用[J].化学工程,2007,35(4):5-9. 被引量:2
  • 5吕术森.合成气洗涤净化工艺研究[D].上海:华东理工大学,2004.
  • 6Ramamurthi K, Nandakumar K. Characteristics of flow through small sharp-edged cylindrical orifices. Flow Measurement and Instrumentation, 1999 (10):133-143
  • 7Borutzky W, Barnad B, Thoma J. An orifice flow model for laminar and turbulent conditions. Simulation Modelling Practice and Theory, 2002 (10): 141-152
  • 8Jin Zhaoming(金朝铭).Hydraulic Pressure Fluid Mechanics(液压流体力学).Beijing: National DefenseIndustry Press, 1994:206-213
  • 9Luo Tiqian(罗惕乾).Hydrodynamics(流体力学).Beijing: Mechanical Industry Press, 2007:74-78
  • 10Finnemore E J, Franzini J B. (流体力学及其工程应用).Qian Yiji(钱翼稷),Zhou Yuwen(周玉文),et al1.,trans.Beiiing: Mechanical Industry Press, 2006:381-388

共引文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部